DOI QR코드

DOI QR Code

COSMIC RAY SPECTRUM IN SUPERNOVA REMNANT SHOCKS

  • Kang, Hye-Sung (Department of Earth Sciences, Pusan National University)
  • Received : 2010.02.19
  • Accepted : 2010.03.16
  • Published : 2010.04.30

Abstract

We perform kinetic simulations of diffusive shock acceleration (DSA) in Type Ia supernova remnants (SNRs) expanding into a uniform interstellar medium (ISM). Bohm-like diffusion due to self-excited $Alfv\acute{e}n$ waves is assumed, and simple models for $Alfv\acute{e}nic$ drift and dissipation are adopted. Phenomenological models for thermal leakage injection are considered as well. We find that the preshock gas temperature is the primary parameter that governs the cosmic ray (CR) acceleration efficiency and energy spectrum, while the CR injection rate is a secondary parameter. For SNRs in the warm ISM of $T_0\lesssim10^5K$, if the injection fraction is $\xi\gtrsim10^{-4}K$, the DSA is efficient enough to convert more than 20% of the SN explosion energy into CRs and the accelerated CR spectrum exhibits a concave curvature flattening to $E^{-1.6}$, which is characteristic of CR modified shocks. Such a flat source spectrum near the knee energy, however, may not be reconciled with the CR spectrum observed at Earth. On the other hand, SNRs in the hot ISM of$T_{0}\approx10^{6}K$ with a small injection fraction, $\xi$<$10^{-4}$, are inefficient accelerators with less than 10% of the explosion energy getting converted to CRs. Also the shock structure is almost test-particle like and the ensuing CR spectrum can be steeper than $E^{-2}$. With amplified magnetic field strength of order of $30{\mu}G$ $Alfv\acute{e}n$ waves generated by the streaming instability may drift upstream fast enough to make the modified test-particle power-law as steep as $E^{-2.3}$, which is more consistent with the observed CR spectrum.

Keywords

References

  1. Abdo, A. A. for the Fermi LAT collaboration, 2009, Fermi LAT Discovery of Extended Gamma-Ray Emission in the Direction of Supernova Remnant W51C, ApJL, 706, L1 https://doi.org/10.1088/0004-637X/706/1/L1
  2. Abdo, A. A. for the Fermi LAT collaboration, 2010, Fermi-Lat Discovery of GeV Gamma-Ray Emission from the Young Supernova Remnant Cassiopeia A, ApJL, 710, L92 https://doi.org/10.1088/2041-8205/710/1/L92
  3. Aharonian, H. for the H.E.S.S. collaboration, 2004, High-Energy Particle Acceleration in the Shell of a Supernova Remnant, Nature, 432, 75 https://doi.org/10.1038/nature02960
  4. Aharonian, H. for the H.E.S.S. collaboration, 2009, Discovery of Gamma-Ray Emission From the Shell-Type Supernova Remnant RCW 86 With Hess, ApJ, 692, 1500 https://doi.org/10.1088/0004-637X/692/2/1500
  5. Amato, E., Blasi, P. 2006, Non-Linear Particle Acceleration at Non-Relativistic Shock Waves in the Presence of Self-Generated Turbulence, MNRAS, 371, 1251 https://doi.org/10.1111/j.1365-2966.2006.10739.x
  6. Ave, M., Boyle, P. J., Hoppner, C., Marshall, J., & Muller, D. 2009, Propagation and Source Energy Spectral of Cosmic Ray Nuclei at High Energies, ApJ, 697, 106 https://doi.org/10.1088/0004-637X/697/1/106
  7. Bamba, A., Yamazaki, R, Ueno, M. & Koyama, K. 2003, Small-Scale Structure of the SN 1006 Shock with Chandra Observations, ApJ, 589, 827 https://doi.org/10.1086/374687
  8. Bamba, A., Yamazaki, R, Yoshida, T., Terasawa, T., & Koyama, K. 2006, Small-Scale Structure of Non-Thermal X-Rays in Historical SNRs, Advances in Space Research, 37, 1439 https://doi.org/10.1016/j.asr.2005.08.011
  9. Bell, A. R. 1978, The Acceleration of Cosmic Rays in Shock Fronts. I, MNRAS, 182, 147 https://doi.org/10.1093/mnras/182.2.147
  10. Bell, A. R. 2004, Turbulent Amplification of Magnetic Field and Diffusive Shock Acceleration of Cosmic Rays, MN-RAS, 353, 550 https://doi.org/10.1111/j.1365-2966.2004.08097.x
  11. Berezhko, E. G., & Volk, H. J. 1997, Kinetic Theory of Cosmic Rays and Gamma Rays in Supernova Remnants. I. Uniform interstellar medium, Astropart. Phys. 7, 183 https://doi.org/10.1016/S0927-6505(97)00016-9
  12. Berezhko, E. G., Ksenofontov, L. T., & Volk, H. J. 2003, Confirmation of Strong Magnetic Field Amplification and Nuclear Cosmic Ray Acceleration in SN 1006, A&Ap, 423, L11
  13. Berezhko, E. G., & Volk, H. J. 2006, Theory of Cosmic Ray Production in the Supernova Remnant RX J1713.7-3946, A&Ap, 451, 981 https://doi.org/10.1051/0004-6361:20054595
  14. Berezhko, E. G., Ksenofontov, L. T., & Volk, H. J. 2009, Cosmic Ray Acceleration Parameters from Multi-Wavelength Observations. The case of SN 1006, A&Ap, 505, 169 https://doi.org/10.1051/0004-6361/200911948
  15. Blandford, R. D., & Eichler, D. 1987, Particle Acceleration at Astrophysical Shocks - A Theory of Cosmic-Ray Origin, Phys. Rept., 154, 1 https://doi.org/10.1016/0370-1573(87)90134-7
  16. Blasi, P., Gabici, S., & Vannoni, G, 2005, On the Role of Injection in Kinetic Approaches to Non-Linear Particle Acceleration at Non-Relativistic Shock Waves, MNRAS, 361, 907 https://doi.org/10.1111/j.1365-2966.2005.09227.x
  17. Caprioli, D., Amato, E., Blasi, P. 2009, The Contribution of Supernova Remnants to the Galactic Cosmic Ray Spectrum, preprint arXiv:0912.2964 https://doi.org/10.1016/j.astropartphys.2010.01.002
  18. Drury, L. O'C., Ellison, D. E., Aharonian, F. A. et al. 2001, Test of Galactic Cosmic-Ray Source Models - Working Group Report, Space Science Reviews, 99, 329 https://doi.org/10.1023/A:1013825905795
  19. Giacalone, J. 2005, The Efficient Acceleration of Thermal Protons by Perpendicular Shocks, ApJ, 628, L37 https://doi.org/10.1086/432510
  20. Giacalone, J., Jokipii, J. R. 2007, Magnetic Field Amplification by Shocks in Turbulent Fluids, ApJ, 663, L41 https://doi.org/10.1086/519994
  21. Helder, E. A. et al. 2009, Measuring the Cosmic-Ray Acceleration Efficiency of a Supernova Remnant, Science, 325, 719 https://doi.org/10.1126/science.1173383
  22. Jones, T. W. 1993, Alfven Wave Transport Effects in the Time Evolution of Parallel Cosmic-Ray-Modified Shocks ApJ, 413, 619 https://doi.org/10.1086/173031
  23. Kang, H. 2006, Cosmic Ray Acceleration at Blast Waves From Type Ia Supernovae, Journal of Korean Astronomical Society, 39, 95 (Paper I) https://doi.org/10.5303/JKAS.2006.39.4.095
  24. Kang, H., & Jones, T. W. 1995, Diffusive Shock Acceleration Simulations: Comparison with Particle Methods and Bow Shock Measurements, ApJ, 447, 944 https://doi.org/10.1086/175932
  25. Kang, H., Jones, T. W., LeVeque, R. J., & Shyue, K. M. 2001, Time Evolution of Cosmic-Ray Modified Plane Shocks, ApJ, 550, 737 https://doi.org/10.1086/319804
  26. Kang, H., Jones, T. W., & Gieseler, U. D. J. 2002, Numerical Studies of Cosmic-Ray Injection and Acceleration, ApJ, 579, 337 https://doi.org/10.1086/342724
  27. Kang, H., & Jones, T. W. 2006, Numerical Studies of Diffusive Shock Acceleration at Spherical Shocks, Astropart. Phys., 25, 246 https://doi.org/10.1016/j.astropartphys.2006.02.006
  28. Kang, H., & Jones, T. W. 2007, Self-Similar Evolution of Cosmic-Ray-Modified Quasi-Parallel Plane Shocks, Astropart. Phys., 28, 232 https://doi.org/10.1016/j.astropartphys.2007.05.007
  29. Kang, H., Ryu, D., & Jones, T. W. 2009, Self-Similar Evolution of Cosmic-Ray Modified Shocks: The Cosmic-Ray Spectrum, ApJ, 695, 1273 https://doi.org/10.1088/0004-637X/695/2/1273
  30. Koyama, K., Petre, R., Gotthelf, E. V. et al. 1995, Evidence for Shock Acceleration of High-Energy Electrons in the Supernova Remnant SN:1006, Nature, 378, 255 https://doi.org/10.1038/378255a0
  31. Lagage, P.O., & Cesarsky, C. J. 1983, The Maximum Energy of Cosmic Rays Accelerated by Supernova Shocks, A&Ap, 118, 223
  32. Lucek, S. G., & Bell, A. R. 2000, Non-Linear Amplification of a Magnetic Field Driven by Cosmic Ray Streaming, MNRAS, 314, 65 https://doi.org/10.1046/j.1365-8711.2000.03363.x
  33. Malkov, M. A., & Drury, L. O'C. 2001, Nonlinear Theory of Diffusive Acceleration of Particles by Shock Waves, Rep. Progr. Phys., 64, 429 https://doi.org/10.1088/0034-4885/64/4/201
  34. Malkov, M. A., & Volk, H. J. 1998, Diffusive Ion Acceleration at Shocks: The Problem of Injection, Adv. Space Res., 21, 551 https://doi.org/10.1016/S0273-1177(97)00961-7
  35. Morlino, G., Amato, E., & Blasi, P. 2009, Gamma-Ray Emission from SNR RX J1713.7-3946 and the Origin of Galactic Cosmic Rays, MNRAS, 392, 240 https://doi.org/10.1111/j.1365-2966.2008.14033.x
  36. Parizot, E., Marcowith, A., Ballet, J., & Gallant, Y. A. 2006, Observational Constraints on Energetic Particle Diffusion in Young Supernovae Remnants: Amplified Magnetic Field and Maximum Energy, A&Ap, 453, 387 https://doi.org/10.1051/0004-6361:20064985
  37. Reynolds, S. P. 2008, Supernova Remnants at High Energy, Annu. Rev. of Astro. Astrophys., 46, 89 https://doi.org/10.1146/annurev.astro.46.060407.145237
  38. Skilling, J. 1975, Cosmic Ray Streaming. I - Effect of Alfven Waves on Particles, MNRAS, 172, 557 https://doi.org/10.1093/mnras/172.3.557
  39. Spitzer, L. J. 1978, Physical Processes in the Interstellar Medium (John Wiley and Sons, New York).
  40. Volk, H. J., Berezhko, E. G., & Ksenofontov, L. T. 2003, Variation of Cosmic Ray Injection across Supernova Shocks, A&Ap, 409, 563 https://doi.org/10.1051/0004-6361:20031082
  41. Volk, H. J., Berezhko, E. G., & Ksenofontov, L. T. 2005, Magnetic Field Amplification in Tycho and Other Shell-Type Supernova Remnants, A&Ap, 433, 229 https://doi.org/10.1051/0004-6361:20042015
  42. Vladimirov, A. E., Bykov, A. M., Ellison, D. C. 2008, Turbulence Dissipation and Particle Injection in Nonlinear Diffusive Shock Acceleration with Magnetic Field Amplification, ApJ, 688, 1084 https://doi.org/10.1086/592240
  43. Zirakashvili, V. N., & Ptuskin, V. S. 2008, The Influence of the Alfvenic Drift on the Shape of Cosmic Ray Spectra in SNRs, Proceedings of the 4th International Meeting on High Energy Gamma-Ray Astronomy, AlP Conference Proceedings, 1085, 336

Cited by

  1. NONTHERMAL RADIATION FROM SUPERNOVA REMNANTS: EFFECTS OF MAGNETIC FIELD AMPLIFICATION AND PARTICLE ESCAPE vol.777, pp.1, 2013, https://doi.org/10.1088/0004-637X/777/1/25
  2. Origin of Galactic Cosmic Rays from Supernova Remnants vol.256-257, 2014, https://doi.org/10.1016/j.nuclphysbps.2014.10.003
  3. DIFFUSIVE SHOCK ACCELERATION IN TEST-PARTICLE REGIME vol.721, pp.1, 2010, https://doi.org/10.1088/0004-637X/721/1/886
  4. ANTIPROTONS PRODUCED IN SUPERNOVA REMNANTS vol.791, pp.2, 2014, https://doi.org/10.1088/2041-8205/791/2/L22
  5. Nonthermal Radiation from Supernova Remnant Shocks vol.30, pp.3, 2013, https://doi.org/10.5140/JASS.2013.30.3.133
  6. COSMIC RAY ACCELERATION AT PERPENDICULAR SHOCKS IN SUPERNOVA REMNANTS vol.792, pp.2, 2014, https://doi.org/10.1088/0004-637X/792/2/133
  7. Cosmic ray spectrum from diffusive shock acceleration vol.336, pp.1, 2011, https://doi.org/10.1007/s10509-011-0709-7