Browse > Article
http://dx.doi.org/10.5303/JKAS.2010.43.2.025

COSMIC RAY SPECTRUM IN SUPERNOVA REMNANT SHOCKS  

Kang, Hye-Sung (Department of Earth Sciences, Pusan National University)
Publication Information
Journal of The Korean Astronomical Society / v.43, no.2, 2010 , pp. 25-39 More about this Journal
Abstract
We perform kinetic simulations of diffusive shock acceleration (DSA) in Type Ia supernova remnants (SNRs) expanding into a uniform interstellar medium (ISM). Bohm-like diffusion due to self-excited $Alfv\acute{e}n$ waves is assumed, and simple models for $Alfv\acute{e}nic$ drift and dissipation are adopted. Phenomenological models for thermal leakage injection are considered as well. We find that the preshock gas temperature is the primary parameter that governs the cosmic ray (CR) acceleration efficiency and energy spectrum, while the CR injection rate is a secondary parameter. For SNRs in the warm ISM of $T_0\lesssim10^5K$, if the injection fraction is $\xi\gtrsim10^{-4}K$, the DSA is efficient enough to convert more than 20% of the SN explosion energy into CRs and the accelerated CR spectrum exhibits a concave curvature flattening to $E^{-1.6}$, which is characteristic of CR modified shocks. Such a flat source spectrum near the knee energy, however, may not be reconciled with the CR spectrum observed at Earth. On the other hand, SNRs in the hot ISM of$T_{0}\approx10^{6}K$ with a small injection fraction, $\xi$<$10^{-4}$, are inefficient accelerators with less than 10% of the explosion energy getting converted to CRs. Also the shock structure is almost test-particle like and the ensuing CR spectrum can be steeper than $E^{-2}$. With amplified magnetic field strength of order of $30{\mu}G$ $Alfv\acute{e}n$ waves generated by the streaming instability may drift upstream fast enough to make the modified test-particle power-law as steep as $E^{-2.3}$, which is more consistent with the observed CR spectrum.
Keywords
cosmic ray acceleration; supernova remnants; hydrodynamics; methods: numerical;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Malkov, M. A., & Volk, H. J. 1998, Diffusive Ion Acceleration at Shocks: The Problem of Injection, Adv. Space Res., 21, 551   DOI   ScienceOn
2 Morlino, G., Amato, E., & Blasi, P. 2009, Gamma-Ray Emission from SNR RX J1713.7-3946 and the Origin of Galactic Cosmic Rays, MNRAS, 392, 240   DOI   ScienceOn
3 Parizot, E., Marcowith, A., Ballet, J., & Gallant, Y. A. 2006, Observational Constraints on Energetic Particle Diffusion in Young Supernovae Remnants: Amplified Magnetic Field and Maximum Energy, A&Ap, 453, 387   DOI   ScienceOn
4 Reynolds, S. P. 2008, Supernova Remnants at High Energy, Annu. Rev. of Astro. Astrophys., 46, 89   DOI   ScienceOn
5 Skilling, J. 1975, Cosmic Ray Streaming. I - Effect of Alfven Waves on Particles, MNRAS, 172, 557   DOI
6 Spitzer, L. J. 1978, Physical Processes in the Interstellar Medium (John Wiley and Sons, New York).
7 Volk, H. J., Berezhko, E. G., & Ksenofontov, L. T. 2003, Variation of Cosmic Ray Injection across Supernova Shocks, A&Ap, 409, 563   DOI   ScienceOn
8 Volk, H. J., Berezhko, E. G., & Ksenofontov, L. T. 2005, Magnetic Field Amplification in Tycho and Other Shell-Type Supernova Remnants, A&Ap, 433, 229   DOI   ScienceOn
9 Vladimirov, A. E., Bykov, A. M., Ellison, D. C. 2008, Turbulence Dissipation and Particle Injection in Nonlinear Diffusive Shock Acceleration with Magnetic Field Amplification, ApJ, 688, 1084   DOI
10 Zirakashvili, V. N., & Ptuskin, V. S. 2008, The Influence of the Alfvenic Drift on the Shape of Cosmic Ray Spectra in SNRs, Proceedings of the 4th International Meeting on High Energy Gamma-Ray Astronomy, AlP Conference Proceedings, 1085, 336
11 Kang, H. 2006, Cosmic Ray Acceleration at Blast Waves From Type Ia Supernovae, Journal of Korean Astronomical Society, 39, 95 (Paper I)   DOI   ScienceOn
12 Kang, H., & Jones, T. W. 1995, Diffusive Shock Acceleration Simulations: Comparison with Particle Methods and Bow Shock Measurements, ApJ, 447, 944   DOI
13 Kang, H., Jones, T. W., LeVeque, R. J., & Shyue, K. M. 2001, Time Evolution of Cosmic-Ray Modified Plane Shocks, ApJ, 550, 737   DOI
14 Kang, H., Jones, T. W., & Gieseler, U. D. J. 2002, Numerical Studies of Cosmic-Ray Injection and Acceleration, ApJ, 579, 337   DOI
15 Kang, H., & Jones, T. W. 2006, Numerical Studies of Diffusive Shock Acceleration at Spherical Shocks, Astropart. Phys., 25, 246   DOI   ScienceOn
16 Kang, H., & Jones, T. W. 2007, Self-Similar Evolution of Cosmic-Ray-Modified Quasi-Parallel Plane Shocks, Astropart. Phys., 28, 232   DOI   ScienceOn
17 Kang, H., Ryu, D., & Jones, T. W. 2009, Self-Similar Evolution of Cosmic-Ray Modified Shocks: The Cosmic-Ray Spectrum, ApJ, 695, 1273   DOI
18 Koyama, K., Petre, R., Gotthelf, E. V. et al. 1995, Evidence for Shock Acceleration of High-Energy Electrons in the Supernova Remnant SN:1006, Nature, 378, 255   DOI   ScienceOn
19 Lagage, P.O., & Cesarsky, C. J. 1983, The Maximum Energy of Cosmic Rays Accelerated by Supernova Shocks, A&Ap, 118, 223
20 Lucek, S. G., & Bell, A. R. 2000, Non-Linear Amplification of a Magnetic Field Driven by Cosmic Ray Streaming, MNRAS, 314, 65   DOI   ScienceOn
21 Malkov, M. A., & Drury, L. O'C. 2001, Nonlinear Theory of Diffusive Acceleration of Particles by Shock Waves, Rep. Progr. Phys., 64, 429   DOI   ScienceOn
22 Berezhko, E. G., Ksenofontov, L. T., & Volk, H. J. 2003, Confirmation of Strong Magnetic Field Amplification and Nuclear Cosmic Ray Acceleration in SN 1006, A&Ap, 423, L11
23 Berezhko, E. G., & Volk, H. J. 2006, Theory of Cosmic Ray Production in the Supernova Remnant RX J1713.7-3946, A&Ap, 451, 981   DOI   ScienceOn
24 Berezhko, E. G., Ksenofontov, L. T., & Volk, H. J. 2009, Cosmic Ray Acceleration Parameters from Multi-Wavelength Observations. The case of SN 1006, A&Ap, 505, 169   DOI   ScienceOn
25 Blandford, R. D., & Eichler, D. 1987, Particle Acceleration at Astrophysical Shocks - A Theory of Cosmic-Ray Origin, Phys. Rept., 154, 1   DOI   ScienceOn
26 Blasi, P., Gabici, S., & Vannoni, G, 2005, On the Role of Injection in Kinetic Approaches to Non-Linear Particle Acceleration at Non-Relativistic Shock Waves, MNRAS, 361, 907   DOI   ScienceOn
27 Caprioli, D., Amato, E., Blasi, P. 2009, The Contribution of Supernova Remnants to the Galactic Cosmic Ray Spectrum, preprint arXiv:0912.2964   DOI   ScienceOn
28 Drury, L. O'C., Ellison, D. E., Aharonian, F. A. et al. 2001, Test of Galactic Cosmic-Ray Source Models - Working Group Report, Space Science Reviews, 99, 329   DOI
29 Giacalone, J. 2005, The Efficient Acceleration of Thermal Protons by Perpendicular Shocks, ApJ, 628, L37   DOI
30 Giacalone, J., Jokipii, J. R. 2007, Magnetic Field Amplification by Shocks in Turbulent Fluids, ApJ, 663, L41   DOI
31 Helder, E. A. et al. 2009, Measuring the Cosmic-Ray Acceleration Efficiency of a Supernova Remnant, Science, 325, 719   DOI   ScienceOn
32 Jones, T. W. 1993, Alfven Wave Transport Effects in the Time Evolution of Parallel Cosmic-Ray-Modified Shocks ApJ, 413, 619   DOI
33 Abdo, A. A. for the Fermi LAT collaboration, 2009, Fermi LAT Discovery of Extended Gamma-Ray Emission in the Direction of Supernova Remnant W51C, ApJL, 706, L1   DOI
34 Abdo, A. A. for the Fermi LAT collaboration, 2010, Fermi-Lat Discovery of GeV Gamma-Ray Emission from the Young Supernova Remnant Cassiopeia A, ApJL, 710, L92   DOI
35 Aharonian, H. for the H.E.S.S. collaboration, 2004, High-Energy Particle Acceleration in the Shell of a Supernova Remnant, Nature, 432, 75   DOI   ScienceOn
36 Aharonian, H. for the H.E.S.S. collaboration, 2009, Discovery of Gamma-Ray Emission From the Shell-Type Supernova Remnant RCW 86 With Hess, ApJ, 692, 1500   DOI
37 Amato, E., Blasi, P. 2006, Non-Linear Particle Acceleration at Non-Relativistic Shock Waves in the Presence of Self-Generated Turbulence, MNRAS, 371, 1251   DOI   ScienceOn
38 Ave, M., Boyle, P. J., Hoppner, C., Marshall, J., & Muller, D. 2009, Propagation and Source Energy Spectral of Cosmic Ray Nuclei at High Energies, ApJ, 697, 106   DOI
39 Bamba, A., Yamazaki, R, Ueno, M. & Koyama, K. 2003, Small-Scale Structure of the SN 1006 Shock with Chandra Observations, ApJ, 589, 827   DOI
40 Bamba, A., Yamazaki, R, Yoshida, T., Terasawa, T., & Koyama, K. 2006, Small-Scale Structure of Non-Thermal X-Rays in Historical SNRs, Advances in Space Research, 37, 1439   DOI   ScienceOn
41 Bell, A. R. 1978, The Acceleration of Cosmic Rays in Shock Fronts. I, MNRAS, 182, 147   DOI
42 Bell, A. R. 2004, Turbulent Amplification of Magnetic Field and Diffusive Shock Acceleration of Cosmic Rays, MN-RAS, 353, 550   DOI   ScienceOn
43 Berezhko, E. G., & Volk, H. J. 1997, Kinetic Theory of Cosmic Rays and Gamma Rays in Supernova Remnants. I. Uniform interstellar medium, Astropart. Phys. 7, 183   DOI   ScienceOn