• 제목/요약/키워드: Self Organizing Feature Map

검색결과 152건 처리시간 0.029초

풍력 데이터를 이용한 발전 패턴 예측 (Predicting Power Generation Patterns Using the Wind Power Data)

  • 서동혁;김규익;김광득;류근호
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권11호
    • /
    • pp.245-253
    • /
    • 2011
  • 화석 연료의 무분별한 사용으로 환경이 심각하게 오염되고, 화석 연료의 고갈에 대한 문제가 대두됨에 따라서 화석 연료에 대한 문제를 해결 할 수 있는 대체 에너지원에 대해 관심이 집중되기 시작하였다. 현재 신재생 에너지 중에서 가장 각광을 받고 있는 에너지는 중에 하나가 풍력에너지이다. 풍력에너지 발전단지와 기존의 전력 발전소는 소비되는 전력에 대한 생산의 균형을 맞춰야하며, 풍력에너지단지에서 균형적인 생산을 하기 위해서는 풍력에너지에 대한 분석 및 예측이 필요하다. 이를 위해서 데이터마이닝 분야의 예측 기법이 활용 될 수 있다. 본 논문에서는 풍력 데이터를 이용하여 발전 패턴을 예측하기 위해 SOM(Self-Organizing Feature Map) Clustering 기법과 의사결정나무(decision tree)를 이용한 연구를 진행하였다. 즉, 1) 풍력 데이터의 누락된 데이터와 이상치 데이터를 처리하기 위하여, 전처리 과정을 수행하였고, 이 과정에서 특징 벡터를 추출하였다. 2) 전처리 단계를 거쳐 정제되고 정규화된 데이터 집합을 MIA(Mean Index Adequacy) 척도와 SOM Clustering 기법에 적용하여 대표 발전 패턴을 찾아내고 각각의 데이터에 해당하는 대표 패턴을 클래스 레이블로 할당하도록 하였다. 3) 의사결정나무 기반의 분류 기법에 데이터 집합을 적용시켜 새로운 풍력에너지에 대한 분석 및 예측 모델을 생성하였다. 실험 결과, 의사결정나무를 통한 풍력에너지 발전 패턴을 예측하기 위한 모델을 구축하였다.

SOM과 LVQ에 의한 자음의 분류 (Classification of Consonants by SOM and LVQ)

  • 이채봉;이창영
    • 한국전자통신학회논문지
    • /
    • 제6권1호
    • /
    • pp.34-42
    • /
    • 2011
  • 음성타자기의 구현에 접근하려는 노력의 일환으로서, 우리는 본 논문에서 자음의 분류에 대해 연구한다. 많은 자음들은 시간에 따른 주기적 거동을 보이지 않고 따라서 그들에 대한 푸리에 해석의 타당성에 확신을 갖기 어렵다. 그러므로, 우선 음성 신호로부터 추출되는 MFCC와 LPCC 특징벡터들이 자음에 대해 어느 정도의 의미가 있는지를 파악하기 위하여 LBG 클러스터링을 통한 벡터양자화를 수행한다. VQ의 실험적 결과는 자음에 대한 푸리에 해석의 타당성에 관해 분명한 결론을 내리는 것이 쉽지 않음을 보여주었다. 자음의 분류를 위해 SOM과 LVQ의 두 가지 신경망이 사용되었다. SOM의 결과는 몇 쌍의 자음들이 나뉘어 분류되지 않음을 보여주었다. LVQ에서는 본질적으로 이 문제가 사라지지만 자음의 분류 정확도는 낮은 수준이었다. 이로부터, LVQ에 의한 자음 분류에 있어서는 MFCC 및 다른 특징 벡터들이 함께 사용되어야 함이 사료된다. 하지만 본 연구에서 도입한 MFCC/LVQ의 결합은 기존의 언어모델을 기반으로 하는 음소 분류에 비해 그 결과가 나쁘지 않은 것으로 나타났다. 모든 경우에 LPCC 특징벡터는 MFCC에 비해 그 결과가 좋지 않았다.

기둥축소량 보정을 위한 기둥의 최적그루핑기법 (The Optimal Column Grouping Technique for the Compensation of Column Shortening)

  • 김영민
    • 한국전산구조공학회논문집
    • /
    • 제24권2호
    • /
    • pp.141-148
    • /
    • 2011
  • 본 논문에서는 기둥축소량 보정의 효율성을 증진시키기 위한 방안으로서 유사한 축소 경향을 보이는 기둥들을 동일 그룹으로 묶는 기둥의 최적그루핑기법에 대하여 연구하였다. 기둥의 최적그루핑은 무감독학습에 의해 입력데이타의 패턴을 스스로 분류할 수 있는 코호넨의 자기조직화 형상지도 알고리즘을 이용하였다. 본 연구에 적용된 코호넨 네트워크는 두 개의 입력뉴런과 분류할 기둥그룹 개수만큼의 출력뉴런으로 구성된다. 입력뉴런에는 기둥축소량의 정규화된 평균과 표준편차가 입력되며, 출력뉴런에는 각 기둥이 속하게 될 기둥그룹이 출력된다. 제안된 알고리즘을 실제 축소량 해석이 수행된 두 개의 건물에 적용하여 그 적용성을 평가하였다. 적용결과 동일 그룹으로 분류된 기둥들은 서로 인접하고 있으며 서로 다른 기둥그룹끼리는 교차하지 않는 등 유사한 축소 경향을 보였다. 이로부터 본 연구의 기둥축소량의 최적그루핑 알고리즘은 충분한 실무적용성이 있음을 확인하였다.

일정 적응이득과 이진 강화함수를 가진 경쟁학습 신경회로망의 디지탈 칩 개발과 응용에 관한 연구 (A Study on the Hardware Implementation of Competitive Learning Neural Network with Constant Adaptaion Gain and Binary Reinforcement Function)

  • 조성원;석진욱;홍성룡
    • 한국지능시스템학회논문지
    • /
    • 제7권5호
    • /
    • pp.34-45
    • /
    • 1997
  • 본 논문에서는 경쟁학습 신경회로망의 디지탈 칩 구현에서 뉴런의 집적도를 향상시키기 위해 하드웨어 구현이 용이한 새로운 신경회로망 모델로서 일정 적응이득과 이진 강화함수를 가진 여러 가지 경쟁학습 신경회로망 모델들을 제안하고, 그 중 안정성과 분류성능이 가장 우수한 일정 적응이득과 이진 강화함수를 지닌 자기조직화 형상지도(Self-Organizing Feature Map)신경회로망의 FPGA위에서의 하드웨어 구현에 대해서 논한다. 원래의 SOFM 알고리즘에서 적응이득이 시간 종속형인데 반하여, 본 논문에서 하드웨어로 구현한 알고리즘에서는 적응이득이 일정인 값으로 고정되며 이로 인한 성능저하를 보상하기 위하여 이진 강화함수를 부가한다. 제안한 알고리즘은 복잡한 곱셈 연산을 필요로 하지 않으므로 하드웨어 구현이 용이하다는 특징이있다. 1개의 덧셈/뺄셈기와 2개의 덧셈기로 구성된 단위 뉴런은 형태가 단순하면서 반복적이므로 하나의 FPGA 위에서도 다수의 뉴런을 구현 할수 있으며 비교적 소수의 제어신호로서 이들을 모두 제어 가능할 수 있도록 설계하였다.실험 결과 각 구서부분은 모두 이상 없이 올바로동작하였으며 각 부분이 모두 종합된 전체 시스템도 이상 없이 동작함을 알 수 있었다.

  • PDF

SOFM신경망과 C4.5를 활용한 강의품질 개선 (Improving Lecture Quality using SOFM neural network and C4.5)

  • 이장희
    • 실천공학교육논문지
    • /
    • 제6권2호
    • /
    • pp.71-76
    • /
    • 2014
  • 대학, 기업 및 학원에서 제공하는 교육 서비스의 질을 향상하기 위해서는 주요 활동인 강의의 품질 개선이 필수적이다. 강의 수행 후 수강생에 의해서 평가되는 강의평가 설문 데이터는 강의 품질을 측정하고 개선할 수 있는 좋은 도구로서, 대부분 간단한 통계분석을 통해 처리되고 있다. 본 연구는 강의평가 설문 데이터를 SOFM (Self-Organizing Feature Map) 신경망과 C4.5와 같은 분석도구를 사용하여 분석함으로써 수강생의 만족도와 강의 성과 관련한 특징을 보다 정확하게 파악하고 개선이 필요한 강의 품질 요소를 구체적으로 도출하여 강의 품질을 효율적으로 개선할 수 있는 방안을 제시하였다. 본 연구에서 제시한 방안을 국내 기업의 사내 강의에 적용한 결과, 만족도와 강의 성과 관점에서 미흡한 3개의 수강생 그룹에서 개선이 필요한 총 강의시간, 강의 자료, 강의 시간표 구성 요소를 개선하여 강의 품질이 향상되는 것을 확인하였다.

그래프 컷을 이용한 학습된 자기 조직화 맵의 자동 군집화 (Automatic Clustering on Trained Self-organizing Feature Maps via Graph Cuts)

  • 박안진;정기철
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권9호
    • /
    • pp.572-587
    • /
    • 2008
  • SOFM(Self-organizing Feature Map)은 고차원의 데이타를 군집화(clustering)하거나 시각화(visualization)하기 위해 많이 사용되고 있는 비교사 학습 신경망(unsupervised neural network)의 한 종류이며, 컴퓨터비전이나 패턴인식 분야에서 다양하게 활용되고 있다. 최근 SOFM이 실제 응용분야에 다양하게 활용되고 좋은 결과를 보이고 있지만, 학습된 SOFM의 뉴론(neuron)을 다시 군집화해야 하는 후처리가 필요하며, 대부분의 경우 수동으로 이루어지고 있다. 후처리를 자동으로 하기 위해 k-means와 같은 기존의 군집화 알고리즘을 많이 이용하지만, 이 방법은 특히 다양한 모양의 클래스를 가진 고차원의 데이타에서 만족스럽지 못한 결과를 보인다. 다양한 모양의 클래스에서 좋은 성능을 보이기 위해, 본 논문에서는 그래프 컷(graph cut)을 이용하여 학습된 SOFM을 자동으로 군집화하는 방법을 제안한다. 그래프 컷을 이용할 때 터미널(terminal)이라는 두 개의 추가적인 정점(vertex)이 필요하며, 터미널과 각 정점 사이의 가중치는 대부분 사용자에 의해 입력받은 사전정보를 기반으로 설정된다. 제안된 방법은 SOFM의 거리 매트릭스(distance matrix)를 기반으로 한 모드 탐색(mode-seeking)과 모드의 군집화를 통하여 자동으로 사전정보를 설정하며, 학습된 SOFM의 군집화를 자동으로 수행한다. 실험에서 효율성을 검증하기 위해 제안된 방법을 텍스처 분할(texture segmentation)에 적용하였다. 실험 결과에서 제안된 방법은 기존의 군집화 알고리즘을 이용한 방법보다 높은 정확도를 보였으며, 이는 그래프기반의 군집화를 통해 다양한 모양의 클러스터를 처리할 수 있기 때문이다.

Land Cover Clustering of NDVI-drived Phenological Features

  • Kim, Dong-Keun;Suh, Myoung-Seok;Park, Kyoung-Yoon
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1998년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.201-206
    • /
    • 1998
  • In this paper, we have considered the method for clustering land cover types over the East Asia from AVHRR data. The feature vectors such that maximum NDVI, amplitude of NDVI, mean NDVI, and NDVI threshold are extracted from the 10-day composite by maximum value composite(MVC) for reducing the effect of cloud contaninations. To find the land cover clusters given by the feature vectors, we are adapted the self-organizing feature map(SOFM) clustering which is the mapping of an input vector space of n-dimensions into a one - or two-dimensional grid of output layer. The approach is to find first the clusters by the first layer SOFM and then merge several clusters of the first layer to a large cluster by the second layer SOFM. In experiments, we were used the 8-km AVHRR data for two years(1992-1993) over the East Asia.

  • PDF

강우량-지속시간-침수량 관계곡선과 자기조직화 지도의 연계를 통한 범람범위 추정 (Estimation of Inundation Area by Linking of Rainfall-Duration-Flooding Quantity Relationship Curve with Self-Organizing Map)

  • 김현일;금호준;한건연
    • 대한토목학회논문집
    • /
    • 제38권6호
    • /
    • pp.839-850
    • /
    • 2018
  • 집중호우에 의한 도시 유역의 침수 피해가 도시화에 따라 증가하는 추세이며, 이에 따라 정확하면서도 신속한 홍수예보 및 침수 예상도 표출이 필요하다. 특정 강우량에 따른 미지의 침수 범위를 예상하는 것은 도시 유역의 홍수에 대한 사전 대비에 매우 중요한 사안이며, 이를 위해 현재 홍수 예보와 관련된 정부기관에서 침수 피해 예상도를 주민들에게 제공하고자 하고 있다. 하지만, 특정 강우에 따른 정확한 침수 범위를 정량화하여 표출하는데 부족함이 있으며, 강우량과 지속시간에 따른 홍수의 크기에 대한 분석을 실시하고 수리학적 연계를 통한 준 실시간 침수범위 표출 방안을 고찰해야할 시기이다. 제시된 물리적 해석기반 자료를 이용하여 강우량-지속시간-침수량 관계곡선(Rainfall-Duration-Flooding quantity relationship curve, RDF)을 제시하고, 자율학습을 수행하는 자기조직화 특징 지도와 연계하여 미지의 침수 지도를 예측하였다. 예측한 침수 지도와 2차원 침수모형을 통한 결과를 비교하여, 제시된 방법론의 타당성을 검토하였다. 연구 결과를 통하여 중규모의 강우량 또는 빈도의 사상에 따른 미지의 침수범위를 제시하는데 용이할 것으로 판단된다. 더욱이 다양한 강우-월류량-홍수 양상을 내포하는 RDF 관계 곡선과 최적 침수예상도 데이터베이스를 구축함으로서 추후에 홍수예보의 기초자료로서 사용될 것이다.

다공질 압전 초음파 트랜스튜서를 이용한 3차원 수중 물체인식 (3-D Underwater Object Recognition Using Ultrasonic Transducer Fabricated with Porous Piezoelectric Resonator)

  • 조현철;이수호;박정학;사공건
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 추계학술대회 논문집
    • /
    • pp.316-319
    • /
    • 1996
  • In this study, characteristics of ultrasonic transducer fabricated with porous piezoelectric resonator are investigated, 3-D underwater object recognition using the self-made ultrasonic transducer and SOFM(Self-Organizing Feature Map) neural network are presented. The self-made transducer was satisfied the required condition of ultrasonic transducer in water, and the recognition rates for the training data and the testing data were 100 and 95.3% respectively. The experimental results have shown that the ultrasonic transducer fabricated with porous piezoelectric resonator could be applied for sonar system.

  • PDF

신경회로망을 이용한 전력계통 안전성 평가 연구 (Power System Security Assessment Using The Neural Networks)

  • 이광호;황석영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 D
    • /
    • pp.1130-1132
    • /
    • 1997
  • This paper proposed an application of artificial neural networks to security assessment(SA) in power system. The SA is a important factor in power system operation, but conventional techniques have not achieved the desired speed and accuracy. Since the SA problem involves classification, pattern recognition, prediction, and fast solution, it is well suited for Kohonen neural network application. Self organizing feature map(SOFM) algorithm in this paper provides two dimensional multi maps. The evaluation of this map reveals the significant security features in power system. Multi maps of multi prototype states are proposed for enhancing the versatility of SOFM neural network to various operating state.

  • PDF