Automatic Clustering on Trained Self-organizing Feature Maps via Graph Cuts

그래프 컷을 이용한 학습된 자기 조직화 맵의 자동 군집화

  • Published : 2008.09.15

Abstract

The Self-organizing Feature Map(SOFM) that is one of unsupervised neural networks is a very powerful tool for data clustering and visualization in high-dimensional data sets. Although the SOFM has been applied in many engineering problems, it needs to cluster similar weights into one class on the trained SOFM as a post-processing, which is manually performed in many cases. The traditional clustering algorithms, such as t-means, on the trained SOFM however do not yield satisfactory results, especially when clusters have arbitrary shapes. This paper proposes automatic clustering on trained SOFM, which can deal with arbitrary cluster shapes and be globally optimized by graph cuts. When using the graph cuts, the graph must have two additional vertices, called terminals, and weights between the terminals and vertices of the graph are generally set based on data manually obtained by users. The Proposed method automatically sets the weights based on mode-seeking on a distance matrix. Experimental results demonstrated the effectiveness of the proposed method in texture segmentation. In the experimental results, the proposed method improved precision rates compared with previous traditional clustering algorithm, as the method can deal with arbitrary cluster shapes based on the graph-theoretic clustering.

SOFM(Self-organizing Feature Map)은 고차원의 데이타를 군집화(clustering)하거나 시각화(visualization)하기 위해 많이 사용되고 있는 비교사 학습 신경망(unsupervised neural network)의 한 종류이며, 컴퓨터비전이나 패턴인식 분야에서 다양하게 활용되고 있다. 최근 SOFM이 실제 응용분야에 다양하게 활용되고 좋은 결과를 보이고 있지만, 학습된 SOFM의 뉴론(neuron)을 다시 군집화해야 하는 후처리가 필요하며, 대부분의 경우 수동으로 이루어지고 있다. 후처리를 자동으로 하기 위해 k-means와 같은 기존의 군집화 알고리즘을 많이 이용하지만, 이 방법은 특히 다양한 모양의 클래스를 가진 고차원의 데이타에서 만족스럽지 못한 결과를 보인다. 다양한 모양의 클래스에서 좋은 성능을 보이기 위해, 본 논문에서는 그래프 컷(graph cut)을 이용하여 학습된 SOFM을 자동으로 군집화하는 방법을 제안한다. 그래프 컷을 이용할 때 터미널(terminal)이라는 두 개의 추가적인 정점(vertex)이 필요하며, 터미널과 각 정점 사이의 가중치는 대부분 사용자에 의해 입력받은 사전정보를 기반으로 설정된다. 제안된 방법은 SOFM의 거리 매트릭스(distance matrix)를 기반으로 한 모드 탐색(mode-seeking)과 모드의 군집화를 통하여 자동으로 사전정보를 설정하며, 학습된 SOFM의 군집화를 자동으로 수행한다. 실험에서 효율성을 검증하기 위해 제안된 방법을 텍스처 분할(texture segmentation)에 적용하였다. 실험 결과에서 제안된 방법은 기존의 군집화 알고리즘을 이용한 방법보다 높은 정확도를 보였으며, 이는 그래프기반의 군집화를 통해 다양한 모양의 클러스터를 처리할 수 있기 때문이다.

Keywords

References

  1. T. Kohonen, "The Self-Organizing Map," Proceedings of IEEE, Vol.78, pp. 1464-1480, 1990 https://doi.org/10.1109/5.58325
  2. T. Kohonen, "Self-Organizing Maps," Springer, Berlin, 2001
  3. S. Wu and W. S. Chow, "Clustering of the Self-organizing Map using a Clustering Validity Index based on Inter-cluster and Intra-cluster Density," Pattern Recognition, Vol.37, pp. 175-188, 2004 https://doi.org/10.1016/S0031-3203(03)00237-1
  4. M. Y. Kiang, "Extending the Kohonen Self-Organizing Map Networks for Clustering Analysis," Computational Statistics & Data Analysis, Vol.38, pp. 161-180, 2001 https://doi.org/10.1016/S0167-9473(01)00040-8
  5. J. Vesanto and E. Alhoniemi, "Clustering of the Self-Organizing Maps," IEEE Transactions on Neural Networks, Vol.11, No.3, pp. 586-600, 2000 https://doi.org/10.1109/72.846731
  6. S. Yan, S. S. R. Abidi, and P. H. Artes, "Analyzing Sub-Classifications of Glaucoma via SOM based Clustering of Optic Nerve Images," Proceedings of International Congress of the European Federation for Medical Information, pp. 483-488, 2005
  7. J. Lampinen and E. Oja, "Clustering Properties of Hierarchical Self-Organizing Maps," Journal of Mathematical Imaging and Vision, Vol.2, pp. 261-272, 1992 https://doi.org/10.1007/BF00118594
  8. F. Murtagh, "Interpreting the Kohonen Self-Organizing Feature Map using Contiguity-constrained Clustering," Pattern Recognition Letters, Vol.16, pp. 399-408, 1995 https://doi.org/10.1016/0167-8655(94)00113-H
  9. D. Opolon and F. Moutarde, "Fast Semi-automatic Segmentation Algorithm for Self-Organizing Maps," Proceedings of European Symposium on Artificial Neural Networks, pp. 507-512, 2004
  10. F. Moutarde and A. Ultsch, "U*F Clustering: A New Performant 'Clustering-Mining' Method based on Segmentation of Self-organizing Maps," Proceedings of Workshop on Self-Organizing Maps, pp. 25-32, 2005
  11. A. Vellido, P. J. G. Lisboa, and K. Meehan, "Segmentation of the On-line Shopping Market using Neural Networks," Expert Systems with Applications, Vol.17, pp. 303-314, 1999 https://doi.org/10.1016/S0957-4174(99)00042-1
  12. D. M. Greig, B. T. Porteous, and A. H. Seheult, "Exact Maximum a Posteriori Estimation for Binary Images," Journal of the Royal Statistical Society, Series B, Vol.51, No.2, pp. 271-279, 1989
  13. Y. Boykov and G. Funka-Lea, "Graph Cuts and Efficient N-D Image Segmentation," International Journal of Computer Vision, Vol.70, No.2, pp. 109- 131, 2006 https://doi.org/10.1007/s11263-006-7934-5
  14. Y. Li, J. Sun, C-K Tang, and H-Y Shum, "Lazy Snapping," ACM Transactions on Graphics, Vol. 23, Issue 3, pp. 303-308, Aug. 2004 https://doi.org/10.1145/1015706.1015719
  15. Y. Sun, B. Li, B. Yuan, Z. Miao, and C. Wan, "Better Foreground Segmentation for Static Cameras via New Energy Form and Dynamic Graph- Cut," Proceedings of International Conference on Pattern Recognition, Vol.4, pp. 49-52, 2006
  16. L. Ford and D. Fulkerson, "Flows in Networks," Princeton University Press, 1962
  17. D. Comaniciu and P. Meer, "Mean Shift: A Robust Approach toward Feature Space Analysis," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.24, No.5, pp. 603-619, 2002 https://doi.org/10.1109/34.1000236
  18. J. Chen and A. Kundu, "Unsupervised Texture Segmentation using Multichannel Decomposition and Hidden Markov Models," IEEE Transactions on Image Processing, Vol.4, No.5, pp. 603-619, 1995 https://doi.org/10.1109/83.382495
  19. K. I. Kim, K. Jung, S. H. Park, and H. J. Kim, "Support Vector Machines for Texture Classification," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.24, No.11, pp. 1542-1550, 2002 https://doi.org/10.1109/TPAMI.2002.1046177
  20. P. Brodatz, "Textures: A Photographic Album for Artists and Designers," Dover, New York, 1966
  21. MIT Vision and Modeling Group, 1998
  22. T. Ojala, M. Pietikäinen, and T. Mäenpaa, "Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.24, No.7, 2002
  23. J. Shi and J. Malik, "Normalized Cuts and Image Segmentation," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.22, No.8, 2000
  24. J. Vesanto, J. Himberg, E. Alhoniemi, and J. Parhankangas, "Self-organizing Map in Matlab: the SOM Toolbox," Proceedings of the Matlab DSP Conference, pp. 35-40, 1999
  25. Machine Vision Group, Oulu University, http:// www.ee.oulu.fi/research/image/texture/texture.php?page=matlab
  26. http://www.adastral.ucl.ac.uk/~vladkolm/software. html
  27. http://www.cis.upenn.edu/~jshi/software/