• Title/Summary/Keyword: Selective withdrawal model

Search Result 16, Processing Time 0.032 seconds

Assessment of Selective Withdrawal Facility in the Imha Reservoir Using CE-QUAL-W2 Model (CE-QUAL-W2 모델을 이용한 임하호 선택배제시설의 효과분석)

  • Lee, Sanguk;Kim, Jeongkon;Noh, Joonwoo;Ko, Ick Hwan
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.228-235
    • /
    • 2007
  • For efficient turbid water withdrawal in the Imha reservoir, a selective withdrawal facility was recently installed and operated during summer season of year 2006. In this research, CE-QUAL-W2 model was utilized to assess the efficiency of the selective withdrawal facility, in comparison with the original surface withdrawal, on turbid water management. Model calibration was carried out using data observed at four automatic monitoring stations in the reservoir. It was found that the model appropriately simulated, with the RMSE less than 5.2 NTU, the observed vertical and horizontal distributions of water temperature and turbidity as well as the location of maximum turbid water at each monitoring station. The analysis results showed that selective withdrawal is more effective in removing high turbid water than surface withdrawal as selective withdrawal contributed to reducing $35Mm^3$ of high turbidity water (> 100 NTU) in the reservoir by increasing outflows of high turbid water. Therefore, effective management of turbid water in the reservoir can be achieved by changing locations of intake depending on turbid water distribution conditions. The results of this study will provide some basic information for establishing better operation strategies to cope with turbid water problems.

Numerical Simulation of Selective Withdrawal in Stably Stratified Flows (안정성층류에서 선택취수의 수치해석)

  • Paik, Joong-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.11
    • /
    • pp.973-984
    • /
    • 2005
  • A three-dimensional thermal hydrodynamic model is developed for carrying out unsteady simulation of the selective withdrawal of the stably stratified flow in a geometrically complex, natural reservoir The governing equations are discretized on a non-staggered grid using a second-order accurate, finite-volume scheme. The numerical model is validated by applying it to simulate three-dimensional, turbulent, stratified, shear-layer flow case. The numerical predictions appear to capture reasonably well the general shape of velocity and temperature profiles observed in the laboratory experiments, while significant overestimation of the magnitude of velocity profiles is observed in the application to the flow in a natural reservoir. The physics of selective withdrawal as emerge from the numerical simulations are also discussed.

A Study on Field Experiment and Numerical Modeling for Efficiency Analysis of Selective Withdrawal in Imha Reservoir (임하호 선택취수 효과분석을 위한 현장실험 및 수치해석 연구)

  • Kim, Tae Won;Kim, Young Do;Yi, Yong-Kon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2B
    • /
    • pp.113-121
    • /
    • 2012
  • When a heavy rain brings flooding, a high turbid water is flowing into a reservoir. In this study, the effectiveness of the intake structures for the selective withdrawal from the various levels of a stratified reservoir was evaluated by the field experiments and the numerical modeling of the three-dimensional approaching flows. The temperature, the turbidity, and the velocity fields for the selective withdrawal were measured using both YSI6600EDS and YSI6600ADV, respectively. A threedimensional model, FLOW-3D, was used to predict the performance of the intake tower in Imha reservoir. The comparisons of the vertical velocity field showed a good agreement with the field measurements. The efficiency of the turbid-water elimination of the selective withdrawal method from low levels was higher up to 46% than that of the surface withdrawal. From the analysis of the numerical simulation, the efficiency of turbidity elimination increased by 10% for the selective withdrawal from middle levels, and by 30% from low levels. These results showed that the selective withdrawals from middle and low levels are more effective than the surface-water intake. The similar results were obtained by the one-dimensional model, SELECT, which is much more computationally time-efficient.

Effect of Selective Withdrawal on the Control of Turbidity Flow and Its Water Quality Impact in Deacheong Reservoir (선택취수에 따른 대청호 탁수 조절효과 및 수질영향 분석)

  • Jung, Yong-Rak;Liu, Huan;Kim, Yu-Kyung;Ye, Lyeong;Chung, Se-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.8
    • /
    • pp.601-615
    • /
    • 2007
  • A selective withdrawal method has been widely used to control the quality of water released from a stratified reservoir and to improve downstream ecosystem habitats. Recently, several existing reservoir withdrawal facilities have been modified to accommodate multi-level water intake capabilities in order to adapt the impact of long-term discharge of high turbidity flow. The purpose of this study was to assess the effect of selective withdrawal method on the control of downstream turbidity and its impact on water quality in Daecheong Reservoir. A laterally integrated two-dimensional hydrodynamic and eutrophication model, which was calibrated and validated in the previous studies, was applied to simulate the temporal variations of outflow turbidity with various hypothetical selective withdrawal scenarios. In addition, their impacts on the algal growth as well as water quality constituents were analyzed in three different spatial domains of the reservoir The results showed that the costly selective withdrawal method would provide very limited benefits for downstream turbidity control during two years of consecutive simulations for 2004-2005. In particular, an excessive withdrawal from the epilimnion zone for supplying upper layer clean water resulted in movement of turbidity plume that contained high phosphorus concentrations upward photic zone, and in turn increased algal growth in the lacustrine zone.

Evaluation of SELECT Model for the Quality Prediction of Water Released from Stratified Reservoir (성층화된 저수지의 방류수 수질예측을 위한 SELECT 모델의 적용성 검토)

  • Lee, Heung Soo;Chung, Se Woong;Shin, Sang Il;Choi, Jung Kyu;Kim, Yu Kyung
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.591-599
    • /
    • 2007
  • The quality of water released from a stratified reservoir is dependent on various factors such as the location and shape of intake facility, structure of reservoir stratification, profile of water quality constituent, and withdrawal flux. Sometimes, selective withdrawal capabilities can provide the operational flexibility to meet the water quality demands both in-reservoir and downstream. The objective of this study was to evaluate the performance of a one-dimensional reservoir selective withdrawal model (SELECT) as a tool for supporting downstream water quality management for Daecheong and Imha reservoirs. The simulated water quality variables including water temperature, dissolved oxygen (DO), conductivity, turbidity were compared with the field data measured in tailwater. The model showed fairly satisfactory results and high reliability in simulating observations. The coefficients of determinant between simulated and observed turbidity values were 0.93 and 0.95 for Daecheong and Imha reservoirs, respectively. The outflow water quality was significantly influenced by water intake level under fully stratified condition, while the effect of intake amount was minor. In conclusion, the SELECT is simple but effective tool for supporting downstream water quality prediction and management for both reservoirs.

Simulation of Water Temperature in the Downstream According to Withdrawal Types of Dam using EFDC Model (댐 방류형태가 하류 하천 수온변화에 미치는 영향 예측)

  • Park, Jae-Chung;Yoon, Jin-Hyuk;Jung, Yong-Moon;Son, Ji-Yeon;Song, Young-Il
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.715-724
    • /
    • 2012
  • In this study, we simulated water temperature in the downstream according to withdrawal types of dam using EFDC model. Three scenarios were assumed as water was released from the surface layer, the middle layer, and the bottom layer at intervals of 10m depth. In case of the surface layer withdrawal, the water temperature rose from March and lowered gradually after it reached a peak in August. The middle and the bottom layers effluence temperatures were lower than the surface layer temperature by maximum $15.9^{\circ}C$(in July), but after September, temperature inversion appeared. It was advantageous for the surface layer withdrawal to decrease cold damage and fog in downstream area and was possible to the middle and the bottom layers withdrawal from August to September. However, the reliability of model should be improved by accumulating the real-time information of water temperature.

Development of a Decision Support System for Turbid Water Management through Joint Dam Operation

  • Kim, Jeong-Kon;Ko, Ick-Hwan;Yoo, Yang-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.31-39
    • /
    • 2007
  • In this study we developed a turbidity management system to support the operation for effective turbid water management. The decision-making system includes various models for prediction of turbid water inflow, effective reservoir operation using the selective withdrawal facility, analysis of turbid water discharge in the downstream. The system is supported by the intensive monitoring devices installed in the upstream rivers, reservoirs, and downstream rivers. SWAT and HSPF models were constructed to predict turbid water flows in the Imha and Andong catchments. CE-QUAL-W2 models were constructed for turbid water behavior prediction, and various analyses were conducted to examine the effects of the selective withdrawal operation for efficient high turbid water discharge, turbid water distribution under differing amount and locations of turbid water discharge. A 1-dimensional dynamic water quality model was built using Ko-Riv1 for simulation of turbidity propagation in the downstream of the reservoirs, and 2-dimensional models were developed to investigate the mixing phenomena of two waters discharged from the Andong and Imha reservoirs with different temperature and turbidity conditions during joint dam operation for reducing the impacts of turbid water.

  • PDF

Simulation of Turbid Water According to Watershed Runoff and Withdrawal Type in a Constructing Reservoir (건설 예정인 댐에서 유역유출과 취수형태에 따른 탁수의 거동 예측)

  • Park, Jae-Chung;Choi, Jae-Hun;Song, Young-Il;Yu, Kyung-Mi;Kang, Bo-Seung;Song, Sang-Jin
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.3
    • /
    • pp.247-257
    • /
    • 2010
  • Watershed runoff and turbid water dynamics were simulated in the Youngju Dam, being constructed. The runoff flow and suspended solids were simulated and then thermal stratification and turbid water current in the reservoir were predicted by HSPF and CE-QUAL-W2 model, respectively. Considering selective withdrawal, we hypothesized 3 withdrawal types from the dam, i.e. surface layer, middle layer and the lowest layer. The maximum concentration of SS was 400mg/L in reservoir and it was decreased by the withdrawal. The inflowed turbid water fell to 30 NTU after 12 days regardless of the withdrawal types, but the surface layer withdrawal was a better type at turbid water discharge than the others. In current environmental impact assessment(EIA), we concluded that runoff and reservoir water quality predicted by HSPF and CE-QUAL-W2 was desirable, and appropriate parameters were selected by continous monitoring after EIA.

Effect of Installing a Selective Withdrawal Structure for the Control of Turbid Water in Soyang Reservoir (탁수조절을 위한 소양호 선택취수설비 설치 효과 분석)

  • Chung, Se Woong;Park, Hyung Seok;Yoon, Sung Wan;Ryu, In Gu
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.743-753
    • /
    • 2011
  • One of the most important water management issues of Soyang Reservoir, located in North Han River in Korea, is a long term discharge of turbid water to downstream during flood season. Installation of a selective withdrawal structure (SWS) is planned by the reservoir management institute as a control measure of outflow water quality and associated negative impacts on downstream water use and ecosystem. The objective of the study was to explore the effectiveness of the SWS on the control of outflow turbidity under two different hydrological years; one for normal flood year and another for extreme flood year. A two-dimensional (2D), laterally averaged hydrodynamic and water quality model (CE-QUAL-W2) was set up and calibrated for the reservoir and used to evaluate the performance of the proposed SWS. The results revealed that the SWS can be an effective method when the ${\Theta}$ value, the ratio between the amount of turbid water that containing suspended sediment (SS) greater than 25 mg/L and the total storage of the reservoir, is 0.59 during the normal flood year. However, the effectiveness of the SWS could be marginal or negative in the extreme flood year when ${\Theta}$ was 0.83. The results imply that the SWS is an effective alternative for the control of turbid water for moderate flood events, but not a sufficient measure for large flood events that are expected to happen more often in the future because of climate change.