Browse > Article
http://dx.doi.org/10.3741/JKWRA.2007.40.8.601

Effect of Selective Withdrawal on the Control of Turbidity Flow and Its Water Quality Impact in Deacheong Reservoir  

Jung, Yong-Rak (Dept. of Envirn. Engrg. Chungbuk National University)
Liu, Huan (Dept. of Envirn. Engrg. Chungbuk National University)
Kim, Yu-Kyung (Dept. of Envirn. Engrg. Chungbuk National University)
Ye, Lyeong (Dept. of Envirn. Engrg. Chungbuk National University)
Chung, Se-Woong (Dept. of Envirn. Engrg. Chungbuk National University)
Publication Information
Journal of Korea Water Resources Association / v.40, no.8, 2007 , pp. 601-615 More about this Journal
Abstract
A selective withdrawal method has been widely used to control the quality of water released from a stratified reservoir and to improve downstream ecosystem habitats. Recently, several existing reservoir withdrawal facilities have been modified to accommodate multi-level water intake capabilities in order to adapt the impact of long-term discharge of high turbidity flow. The purpose of this study was to assess the effect of selective withdrawal method on the control of downstream turbidity and its impact on water quality in Daecheong Reservoir. A laterally integrated two-dimensional hydrodynamic and eutrophication model, which was calibrated and validated in the previous studies, was applied to simulate the temporal variations of outflow turbidity with various hypothetical selective withdrawal scenarios. In addition, their impacts on the algal growth as well as water quality constituents were analyzed in three different spatial domains of the reservoir The results showed that the costly selective withdrawal method would provide very limited benefits for downstream turbidity control during two years of consecutive simulations for 2004-2005. In particular, an excessive withdrawal from the epilimnion zone for supplying upper layer clean water resulted in movement of turbidity plume that contained high phosphorus concentrations upward photic zone, and in turn increased algal growth in the lacustrine zone.
Keywords
Selective withdrawal; Turbidity control; Water qualify management; Daecheong Reservoir; Algal growth;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Chung, S.W., Oh, J.K., Ko, I.H. (2006). 'Calibration of CE -QUAL - W2 for a Monomictic Reservoir in Monsoon Climate Area.' Water Sci. & Tech, Vol. 54, No.12, pp.29- 37
2 정세웅, 오정국 (2006). '대청호 상류 하천에서 강우시 하천 수온 변동 특성 및 예측 모형 개발.' 한국수자원학회지, 제39권, 제1호, pp. 79-88   과학기술학회마을   DOI
3 Michael L.S., Steven C.W., and Laurin I.Y. (2004). SELECT Version 1.0 Beta: A One-Dimensional Reservoir Selective Withdrawal Model Spreadsheet, U.S. Army Engineer Research and Development Center, Vicksburg, MS, ERDC/EL SR-04-1
4 국립환경연구원 (2003). 금강수계 상수원 수질조사
5 박기영 (2003). 2차원 수치모형을 활용한 임하댐 탁도분석 시스템 구축. 석사학위논문, 경북대학교
6 Gelda, R.K. and Effler, S.W. (2007). 'Simulations of Operations and Water Quality Performance of Reservoir Multilevel Intake Configurations.' J. of Water Resources Planning and Management, Vol. 133, No.1, pp. 78-86   DOI
7 천세억, 이재안, 이재정, 유영복, 방규철, 이열재 (2006). '대청호 유입유량 변동과 수질 및 조류증식의관계.' 한국물환경학회지, 제22권, 제2호, pp. 342-348
8 한국수자원공사 (2004). 대청댐 일원 수문기초조사 보고서, pp. 7
9 Alavian, V., Jirka, G.H., Denton, R.A., Johnson, M.C., and Stefan, H.G. (1992). 'Density currents entering lakes and reservoirs.' J Hydr. Eng., Vol. 118, No.11, pp. 1464 - 1489   DOI
10 김범철, 최광순, 김철구, 이윤희, 김동섭, 박제철 (1998). '소양호의 DOC와 POC 분포.' Korea J. Limnol, 제31권, 제1호, pp. 17-24
11 서동일 (1998). '대청호의 성층현상에 의한 부영양화 특성과 수질관리 방안에 관한 연구.' 대한환경공학회지, 제20권, 제9호, pp. 1219-1234
12 유순주, 김창수, 하성룡, 황종연, 채미희 (2005). '금강 수계 자연유기물 특성 분석.' 한국물환경학회지, 제21권, 제2호, pp. 125-131
13 유순주, 황종연, 윤영삼, 천세억, 한의정 (1999). '하천 . 호소의 유기물 지표 평가.' 환경영향평가, 제8권, 제1호, pp. 81-92
14 윤성완, 정용락, 예령, 김유경, 정세웅(2006). '대청호 유역의 탁수 발생 특성.' 2006년 대한상하수도학회.한국물환경학회 공동 추계학술발표회 논문집, 한국물환경학회, pp. 304
15 전성식, 오인영, 강태구, 서정미, 한인섭 (2005). '강우에 따른 팔당호 수질변화 특성에 관한 연구.' 대한환경공학회 2005 춘계학술발표회논문집, 대한환경공학회, pp. 437-444
16 정세웅 (2004a). '성층화된 저수지로 유입하는 탁류의 공간분포 특성 및 연직 2차원 모델링.' 대한환경공학회지, 제26권, 제9호, pp. 970-978
17 정세웅 (2004b). '저수지 장기간 탁수발생의 원인과 대안.' 수자원정보, 한구수자원공사, 제31권, pp. 88-93
18 정세웅 (2006). '중부권의 생명수 대청호의 수질오염현황과 개선방안.' 수자원정보, 한국수자원공사, 제40호, pp. 6-15
19 정세웅, 박재호, 김유경, 윤성완 (2007). '대청호 부영양화 모의를 위한 CE-QUA1 W2 모델의 적용.' Journal of Korea Society on Water Quality, 제23권, 제1호, pp. 52-63
20 정세웅, 오정국, 고익환 (2005). 'CE-QUAL-W2 모형을 이용한 저수지 탁수의 시공간분포 모의.' 한국수자원학회 논문집, 제38권, 제8호, pp. 655-664   과학기술학회마을   DOI
21 최광순, 김범철, 김형봉, 사승환 (2000). '소양호에서 유기탄소와 $COD_{Mn}$과의 상관관계.' Korea J. Limnol, 제33권, 제4호, pp. 328-335
22 최지용, 이기종, 이지현 (2005). 유역관리를 통한 다목적댐 저수지의 효율적인 탁수관리방안, 한국수자원공사
23 한국수자원공사 (2000). 댐 저수지 탁류 및 오염물질 이송 . 확산 모의기술 개발
24 한국수자원공사 (2006). 다목적댐 실무편람
25 Bohan, J, P., and Grace, J, L., Jr. (1973). Selective withdrawal from man-made lakes; Hydraulic laboratory investigation, U.S. Anny Engineer Watenvays Experiment Station, Vicksburg, MS, Technical Report H-73-4
26 Chung, S.W., Oh, J,K., Ko, I.H. (2006). 'Calibration of CE -QUAL - W2 for a Monomictic Reservoir in Monsoon Climate Area.' Water Sci. & Tech, Vol. 54, No.12, pp.29- 37   DOI   ScienceOn
27 Cole, T.M, and Buchak, E.M. (2006). CE-QUAI W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 3.5 user's manual, U.S, Army Corps of Engineers
28 Cole, T.M., and Tillman, D.H. (2001). Water Quality Modeling of Allatoona and West Point Reservoirs using CE -QUAL - W2, U.S. Army Corps of Engineers
29 Cole, T.M., and Tilhnan, D.H. (1999) Water Quality Modeling of Lake Monroe Using CE-QUAL-W2, January 1999, Miscellaneous Paper EL -99-1
30 Dyson, M., Bergkamp, G., Scanlon, J. (2003). Flow. The Essentials of Environmental Flows. IUCN, Gland, Switzerland and Cambridge, UK
31 Chung, S.W., and Gu, R. (1998). 'Two-dimensional simulations of contaminant currents in stratified reservoir.' J Hydr. Eng., Vol. 124, No.7, pp. 704-711   DOI   ScienceOn
32 Kim, B.R, J.M. Higgins, and D.J. Bruggink (1984). 'Resevoir Circulation Patterns and Water Quality.' J. Environ. Eng., Vol. 109, No.6, pp. 1284-1294   DOI
33 Gordon, J.A., and, Morris, J.W. (1977). 'Reservoir metalirrmion oxygen demands.' J Environ. Eng., Vol. 133, No. E66, p. 1001
34 Martin, J.L., and McCutcheon, S.C. (1999). Hydrodynamics and Transport for Water Quality Modeling, CRC Press, Inc
35 Romero, J. and Imberger, J. (2003), 'Effect of a Flood Underflow on Reservoir Water Quality: Data and TIrree-Dimensional Modelling.' Arch Hydrobiol., Vol. 157, pp. 1-25   DOI
36 Thurman, E, M. (1985). Organic Geochemistry of Natural Water, Kiuwer Academic Publishers, Dordrecht, The Netherlands
37 World Commission on Dams (2000). Dams and Development, Earthscan, London
38 Wunderlich, W.O. and Elder, R.A. (1973). Medxmics of flow through man-made lakes, Man-Made Lakes: Their Problems and Environmental Effents, Ackermann, W.C., White, G.F., and Worthington, E.B(Eds,), Am. Geop. Union, DC
39 Ford, D.E. and Jhonson, L.S. (1981). 'Field observations of density currents in irrooundrrents,' In Proceedings of Symposium on Surface Water Impoundments, Stefan, H. G.(Eds), Am Soc. of Civil Eng., NY
40 Fischer, H.B., List, E.J., Koh, R.C. Y., Imberger, J., and Brooks, N.H. (1979). Mixing in inland and coastal waters, Academic Press, New York, NY
41 Kennedy, R.H.,Thornton, K.W., and Gunkel, R.C. Jr. (1982). 'The establishment of water quality gradients in reservoirs.' J. of Can. Wat. Res., Vol. 7, pp. 71 ~87 (1982)   DOI