DOI QR코드

DOI QR Code

Effect of Installing a Selective Withdrawal Structure for the Control of Turbid Water in Soyang Reservoir

탁수조절을 위한 소양호 선택취수설비 설치 효과 분석

  • Chung, Se Woong (Department of Environmental Engineering, Chungbuk National University) ;
  • Park, Hyung Seok (Department of Environmental Engineering, Chungbuk National University) ;
  • Yoon, Sung Wan (Department of Environmental Engineering, Chungbuk National University) ;
  • Ryu, In Gu (National institute of Environmental Research)
  • Received : 2011.02.25
  • Accepted : 2011.10.19
  • Published : 2011.11.30

Abstract

One of the most important water management issues of Soyang Reservoir, located in North Han River in Korea, is a long term discharge of turbid water to downstream during flood season. Installation of a selective withdrawal structure (SWS) is planned by the reservoir management institute as a control measure of outflow water quality and associated negative impacts on downstream water use and ecosystem. The objective of the study was to explore the effectiveness of the SWS on the control of outflow turbidity under two different hydrological years; one for normal flood year and another for extreme flood year. A two-dimensional (2D), laterally averaged hydrodynamic and water quality model (CE-QUAL-W2) was set up and calibrated for the reservoir and used to evaluate the performance of the proposed SWS. The results revealed that the SWS can be an effective method when the ${\Theta}$ value, the ratio between the amount of turbid water that containing suspended sediment (SS) greater than 25 mg/L and the total storage of the reservoir, is 0.59 during the normal flood year. However, the effectiveness of the SWS could be marginal or negative in the extreme flood year when ${\Theta}$ was 0.83. The results imply that the SWS is an effective alternative for the control of turbid water for moderate flood events, but not a sufficient measure for large flood events that are expected to happen more often in the future because of climate change.

Keywords

References

  1. 국가수자원관리종합정보시스템(2008). http://www.wamis.go.kr/.
  2. 김범철, 정성민(2007). 소양호의 탁수발생 실태와 환경학적 영향. 대한환경공학회지, 26(11), pp. 1185-1190.
  3. 김윤희, 김범철, 최광순, 서동일(2001). CE-QUAL-W2를 이용한 소양호의 수온.밀도류 모델링. 상하수도학회지, 15(1), pp. 40-49.
  4. 김자현, 서진원, 나영언, 안광국(2007). 용담댐 건설후 하류부 하천 생태계의 탁수영향 평가. 한국하천호수학회지, 40(1). pp. 130-142
  5. 박재충, 최재훈, 송영일, 유경미, 강보승, 송상진(2010). 건설예정인 댐에서 유역유출과 취수형태에 따른 탁수의 거동 예측. 환경영향평가, 19(3). pp. 247-257
  6. 신재기, 허진, 이흥수, 박재충, 황순진(2006). 표층수를 방류하는 저수지(용담호)에서 몬순 탁수환경의 공간적 해석. 수질보전 한국물환경학회지, 22(5), pp. 933-942.
  7. 우효섭, 정관수, 이삼희, 류권규, 최성욱, 손광익(2007). 유사 이송 이론과 실무, 청문각.
  8. 이상욱, 김정곤, 노준우, 고익환(2007). CE-QUAL-W2 모델을 이용한 임하호 선택배제시설의 효과분석. 수질보전 한국물환경학회지, 23(2), pp. 228-235.
  9. 이용곤, 김영도, 박기영, 김우구(2005). 임하호 탁도변화 분석을 위한 2차원 수치모의. 대한토목학회논문집B, 25(4), pp. 257-266.
  10. 이흥수, 정세웅, 신상일, 최정규, 김유경(2007). 성층화된 저수지의 방류수 수질예측을 위한 SELECT 모델의 적용성 검토. 수질보전 한국물환경학회지, 23(5), pp. 591-599.
  11. 이홍수, 정세웅, 정회영, 민병환(2010). 대청호 수류차단막 설치 위치에 따른 녹조제어 효과 분석. 수질보전 한국물환경학회지, 26(2), pp. 231-242.
  12. 정세웅, 오정국, 고익환(2005). CE-QUAL-W2 모형을 이용한 저수지 탁수의 시공간분포 모의. 수질보전 한국수자원학회 논문집, 38(8), pp. 655-664.
  13. 정세웅, 이흥수, 윤성완, 예 령, 이준호, 추창오(2007). 홍수시 대청호 유역에 발생하는 탁수의 물리적 특성. 수질보전 한국물환경학회지, 23(6), pp. 934-944.
  14. 정세웅, 이흥수, 정용락(2008). 입자크기 분포를 고려한 부력침강 저수지 밀도류의 탁도 모델링. 수질보전 한국물환경학회지, 24(3), pp. 365-377.
  15. 한국수자원공사(2007). 다목적댐(소양강댐 등 4개댐) 탁수저감 방안 수립 용역 보고서(소양강댐).
  16. 한국수자원공사(2010). 수계단위의 탁수예방 기본계획 보고서.
  17. Anohin, V., Imberger, J., Romerro, J., and Ivey, G. N. (2006). Effect of long internal waves on the quality of water withdrawn form a stratified reservoir. J. Hydr. Eng., 132(11), pp. 1134-1145. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:11(1134)
  18. Bowen, J. D. and Hieronymus, J. W. (2003). A CE-QUAL-W2 Model of Neuse Estuary for Total Maximum Daily Load Development. Journal of Water Resources Planning and Management, 129(4), pp. 283-294. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:4(283)
  19. Cole, T. M. and Buchak, E. M. (1995). CE-QUAL-W2: a two-dimensional, laterally averaged, hydrodynamic and water quality model, user's manual, U.S. Army Engineers Waterways Experiment Station, Vicksburg, MS.
  20. Cole, T. M. and Tillman, D. H. (2001). Water Quality Modeling of Allatoona and West Point Reservoirs using CE-QUAL-W2, U.S. Army Corps of Engineers.
  21. Cole, T. M. and Wells, S. A. (2004). CE-QUAL-W2: A Two Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model. Version 3.2 User Manual, Instruction Report EL-03-1, U.S. Army Corps of Engineers. USA.
  22. Gelda, R. K. and Effler, S. W. (2007). Modeling turbidity in a water supply reservoir: Advancements and issues. J. Environ. Eng., 133(2), pp. 139-148. https://doi.org/10.1061/(ASCE)0733-9372(2007)133:2(139)
  23. Gelda, R. K., Owens, E. M., and Effler, S. W. (1998). Calibratio, Verification, and an Application of a Two-Dimensional Hydrothermal Model[CE-QUAL-W2] for Cannonsville Reservoir. Journal of Lake and Reservoir Management, 14(2-3), pp. 186-196. https://doi.org/10.1080/07438149809354330
  24. Pedocchi, F. and Garcia, M. H. (2006). Evaluation of the LISST-ST instrument for suspended particle size distribution and settling velocity measurements. Continental Shelf Research, 26, pp. 943-958. https://doi.org/10.1016/j.csr.2006.03.006
  25. Shin, J. K., Jeong, S. A., Choi, I. H., and Hwang, S. J. (2004). Dynamics of Turbid Water in a Korean Reservoir with Selective Withdrawal Discharge. Korean Journal of Limnology, 37, pp. 423-430.
  26. Yajima, H., Kikkawa, S., and Ishiguro, J. (2006). Effect of selective withdrawal system operation on the long- and short-term water conservation in a reservoir. Ann. J. Hydraul. Eng., JSCE 50, pp. 1375-380. (in Japanese)