• Title/Summary/Keyword: Selection Matrix

Search Result 405, Processing Time 0.029 seconds

Optimization of Weighting Matrix selection (상태 비중 행렬의 선택에 대한 최적화)

  • 권봉환;윤명중
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.3
    • /
    • pp.91-94
    • /
    • 1985
  • A method optimizing selection of a state weighting matrix is presented. The state weight-ing matrix is chosen so that the closed-loop system responses closely match to the ideal model responses. An algorithm is presented which determines a positive semidefinite state weighting matrix in the linear quadratic optimal control design problem and an numerical example is given to show the effect of the present algorithm.

  • PDF

Error Estimation Method for Matrix Correlation-Based Wi-Fi Indoor Localization

  • Sun, Yong-Liang;Xu, Yu-Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2657-2675
    • /
    • 2013
  • A novel neighbor selection-based fingerprinting algorithm using matrix correlation (MC) for Wi-Fi localization is presented in this paper. Compared with classic fingerprinting algorithms that usually employ a single received signal strength (RSS) sample, the presented algorithm uses multiple on-line RSS samples in the form of a matrix and measures correlations between the on-line RSS matrix and RSS matrices in the radio-map. The algorithm makes efficient use of on-line RSS information and considers RSS variations of reference points (RPs) for localization, so it offers more accurate localization results than classic neighbor selection-based algorithms. Based on the MC algorithm, an error estimation method using artificial neural network is also presented to fuse available information that includes RSS samples and localization results computed by the MC algorithm and model the nonlinear relationship between the available information and localization errors. In the on-line phase, localization errors are estimated and then used to correct the localization results to reduce negative influences caused by a static radio-map and RP distribution. Experimental results demonstrate that the MC algorithm outperforms the other neighbor selection-based algorithms and the error estimation method can reduce the mean of localization errors by nearly half.

Why Gabor Frames? Two Fundamental Measures of Coherence and Their Role in Model Selection

  • Bajwa, Waheed U.;Calderbank, Robert;Jafarpour, Sina
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.289-307
    • /
    • 2010
  • The problem of model selection arises in a number of contexts, such as subset selection in linear regression, estimation of structures in graphical models, and signal denoising. This paper studies non-asymptotic model selection for the general case of arbitrary (random or deterministic) design matrices and arbitrary nonzero entries of the signal. In this regard, it generalizes the notion of incoherence in the existing literature on model selection and introduces two fundamental measures of coherence-termed as the worst-case coherence and the average coherence-among the columns of a design matrix. It utilizes these two measures of coherence to provide an in-depth analysis of a simple, model-order agnostic one-step thresholding (OST) algorithm for model selection and proves that OST is feasible for exact as well as partial model selection as long as the design matrix obeys an easily verifiable property, which is termed as the coherence property. One of the key insights offered by the ensuing analysis in this regard is that OST can successfully carry out model selection even when methods based on convex optimization such as the lasso fail due to the rank deficiency of the submatrices of the design matrix. In addition, the paper establishes that if the design matrix has reasonably small worst-case and average coherence then OST performs near-optimally when either (i) the energy of any nonzero entry of the signal is close to the average signal energy per nonzero entry or (ii) the signal-to-noise ratio in the measurement system is not too high. Finally, two other key contributions of the paper are that (i) it provides bounds on the average coherence of Gaussian matrices and Gabor frames, and (ii) it extends the results on model selection using OST to low-complexity, model-order agnostic recovery of sparse signals with arbitrary nonzero entries. In particular, this part of the analysis in the paper implies that an Alltop Gabor frame together with OST can successfully carry out model selection and recovery of sparse signals irrespective of the phases of the nonzero entries even if the number of nonzero entries scales almost linearly with the number of rows of the Alltop Gabor frame.

Approximate ML Detection with the Best Channel Matrix Selection for MIMO Systems

  • Jin, Ji-Yu;Kim, Seong-Cheol;Park, Yong-Wan
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.280-284
    • /
    • 2008
  • In this paper, a best channel matrix selection scheme(BCMS) is proposed to approximate maximum likelihood(ML) detection for a multiple-input multiple-output system. For a one stage BCMS scheme, one of the transmitted symbols is selected to perform ML detection and the other symbols are detected by zero forcing(ZF). To increase the diversity of the symbols that are detected by ZF, multi-stage BCMS detection scheme is used to further improve the system performance. Simulation results show that the performance of the proposed BCMS scheme can approach that of ML detection with a significant reduction in complexity.

User Selection Scheme Based on the Projection Matrix (투영 행렬을 이용한 사용자 선택 기법)

  • Kim, Gibum;Kim, Jinwoo;Park, Hyuncheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1257-1265
    • /
    • 2015
  • In this paper, we describe a greedy user selection scheme for multiuser multiple-input multiple-output (MIMO) systems. We propose a new metric which has significantly improved performance compared to the Frobenius norm metric. The approximation of projection matrix is applied to increase the accuracy of Frobenius norm of effective channel matrix. We analyze the computational complexity of two metrics by using flop counts, and also verify the achievable sum rate through numerical simulation. Our simulation result shows that the proposed metric can achieve the improved sum rate as the number of user antenna increases.

Optimal Measurement System Design by Using Band Matrix (밴드행열을 이용한 최적측정점선정에 관한 연구)

  • Song, Kyung-Bin;Choi, Sang-Bong;Moon, Toung-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.133-136
    • /
    • 1987
  • This paper presents a new algorithm of optimal measurement system by using band matrix characteristic respectively for state estimation. A performance index of measurement system is established to reflect relation among measurement sets, probability of measurement failure and cost of individual meter installation. Selection ranking in the candidates of measurement sets is composed to guarantee the observability for any any single meter outage. Performance index sensitivity is introduced and recursive formula which based on the matrix inversion lemma used for selection. The proposed algorithm is composed of successive addition algorithm, successive elimination algorithm and combinatorial algorithm. The band matrix characteristic could save in memory requirements and calculate the performance index faster than earlier.

  • PDF

System Requirement Analysis of Multi-Role Helicopter by Implementing Quality Function Deployment (QFD(Quality Function Deployment)를 이용한 다목적 헬리콥터의 시스템 요구도 분석)

  • Kim, Minji;Park, Mi-Young;Lee, Jae-Woo;Byun, Younghan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.56-62
    • /
    • 2005
  • In this study, we first define user requirements to fulfill the reconnaissance and the search missions, by analyzing the system characteristics and operation environment. By investigating the design technology level, the development and procurement costs, the strong system design concepts and possible alternatives will be proposed. To analyze the system requirements, the Quality Function Deployment of the systems engineering approach will be implemented. The promising design alternatives that satisfy the user requirements are extracted by constructing the Morphological Matrix, then the best design concept will be obtained using the Pugh Concept Selection Matrix and the TOPSIS(Technique of Order Preference by Similarity to Ideal Solution).

  • PDF

Accurate Wind Speed Prediction Using Effective Markov Transition Matrix and Comparison with Other MCP Models (Effective markov transition matrix를 이용한 풍속예측 및 MCP 모델과 비교)

  • Kang, Minsang;Son, Eunkuk;Lee, Jinjae;Kang, Seungjin
    • New & Renewable Energy
    • /
    • v.18 no.1
    • /
    • pp.17-28
    • /
    • 2022
  • This paper presents an effective Markov transition matrix (EMTM), which will be used to calculate the wind speed at the target site in a wind farm to accurately predict wind energy production. The existing MTS prediction method using a Markov transition matrix (MTM) exhibits a limitation where significant prediction variations are observed owing to random selection errors and its bin width. The proposed method selects the effective states of the MTM and refines its bin width to reduce the error of random selection during a gap filling procedure in MTS. The EMTM reduces the level of variation in the repeated prediction of wind speed by using the coefficient of variations and range of variations. In a case study, MTS exhibited better performance than other MCP models when EMTM was applied to estimate a one-day wind speed, by using mean relative and root mean square errors.

Adaptive Selection of Weighted Quantization Matrix for H.264 Intra Video Coding (H.264 인트라 부호화를 위한 적응적 가중치 양자화 행렬 선택방법)

  • Cho, Jae-Hyun;Cho, Suk-Hee;Jeong, Se-Yoon;Song, Byung-Cheol
    • Journal of Broadcast Engineering
    • /
    • v.15 no.5
    • /
    • pp.672-680
    • /
    • 2010
  • This paper presents an adaptive quantization matrix selection scheme for H.264 video encoding. Conventional H.264 coding standard applies the same quantization matrix to the entire video sequence without considering local characteristics in each frame. In this paper, we propose block adaptive selection of quantization matrix according to edge directivity of each block. Firstly, edge directivity of each block is determined using intra prediction modes of its spatially adjacent blocks. If the block is decided as a directional block, new weighted quantization matrix is applied to the block. Otherwise, conventional quantization matrix is used for quantization of the non-directional block. Since the proposed weighted quantization is designed based on statistical distribution of transform coefficients in accordance with intra prediction modes, we can achieve high coding efficiency. Experimental results show that the proposed scheme can improve coding efficiency by about 2% in terms of BD bit-rate.

Low-complexity Joint Transmit/Receive Antenna Selection Algorithm for Multi-Antenna Systems (다중 안테나 시스템을 위한 낮은 복잡도의 송/수신안테나 선택 알고리즘)

  • Son, Jun-Ho;Kang, Chung-G.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10A
    • /
    • pp.943-951
    • /
    • 2006
  • Multi-input-multi-output (MIMO) systems are considered to improve the capacity and reliability of next generation mobile communication. However, the multiple RF chains associated with multiple antennas are costly in terms of size, power and hardware. Antenna selection is a low-cost low-complexity alternative to capture many of the advantages of MIMO systems. We proposed new joint Tx/Rx antenna selection algorithm with low complexity. The proposed algorithm is a method selects $L_R{\times}L_T$ channel matrix out of $L_R{\times}L_T$ entire channel gain matrix where $L_R{\times}L_T$ matrix selects alternate Tx antenna with Rx antenna which have the largest channel gain to maximize Frobenius norm. The feature of this algorithm is very low complexity compare with Exhaustive search which have optimum capacity. In case of $4{\times}4$ antennas selection out of $8{\times}8$ antennas, the capacity decreases $0.5{\sim}2dB$ but the complexity also decreases about 1/10,000 than optimum exhaustive search.