• 제목/요약/키워드: Seismic loading

검색결과 1,077건 처리시간 0.024초

EPFT 강관기둥으로 보강된 콘크리트 기둥의 내진성능실험 (Seismic Performance Test of Concrete Column Reinforced with EPFT)

  • 김유성;이준호;김기철
    • 한국공간구조학회논문집
    • /
    • 제22권3호
    • /
    • pp.73-80
    • /
    • 2022
  • Unlike the CFT retrofit method, The EPFT retrofit method, which fills the steel tube with engineering plastic, does not require a separate concrete forming work and is a lightweight seismic Retrofit Method. In this study, an prototype model of the EPFT was proposed, and to analyze the seismic performance, an independent specimens and a reinforced concrete column were fabricated to conduct a seismic performance test. As a result of loading test of the independent specimens, the strength was increased compared to the steel tube column without internal filling, and the ductility ratio did not significantly increase due to the falling off of the weld. As a result of loading test of the concrete reinforcement specimen, the strength, ductility ratio, and energy dissipation were increased, and the number of cracks by loading step decreased compared to the non-reinforced specimen.

지진 하중조건에서 배관 건전성 평가를 위한 실험적 연구 현황 (State-of-the-Art on the Experiment Studies for Evaluating Piping Integrity under Seismic Loading Conditions)

  • 김진원;김종성;김윤재;권형도
    • 한국압력기기공학회 논문집
    • /
    • 제13권1호
    • /
    • pp.16-39
    • /
    • 2017
  • This paper reviewed and summarized the experimental studies conducted during last three decades to evaluate the structural integrity and to establish the acceptance criteria for piping system of nuclear power plants (NPPs) under seismic loading condition. These experimental studies contain the results of large-scale piping system tests under excessive seismic loading as well as standard specimen tests, simplified piping specimen tests, and piping components tests under simplified dynamic and cyclic loading. These would be useful as a basis for establishing integrity assessment procedure and acceptance criteria for piping systems of NPPs under beyond design basis earthquake (BDBE) conditions, and also could be used in planing the scope and direction of further related researches.

강한 지진하중하에서 강부재의 정량적인 손상 모델 (Quantitative Damage Model of Steel Members under Severe Seismic Loading)

  • 박연수;박선준
    • 한국강구조학회 논문집
    • /
    • 제10권3호통권36호
    • /
    • pp.339-353
    • /
    • 1998
  • 본 논문에서는 정량적인 지진 손상모델의 유도를 위해 먼저 지진 반복하중하에서 구조물 및 그들 요소에 대한 기존의 손상 모델들을 체계적으로 정리한 후 문제점을 평가하였다. 또한, 강한 지진과 같은 심한 반복가력을 받는 강구조 부재에 대한 파괴기준을 묘사하였으며, 강부재에 대한 새로운 지진 손상도 평가방법을 제안하였다. 이 손상모델은 극저 사이클 하중하에서 강부재에 대한 일련의 실험과 수치해석 연구로부터 얻어진 것이다. 본 연구에서 극저 사이클 하중은 큰 소성변형 영역안에서 5~20 사이클의 반복하중을 의미한다. 제안된 내진 손상평가 방법은 변형이 가장 심하게 집중된 단면에 있어서 국소 변형율의 이력에 초점을 맞추어 유도되었다.

  • PDF

Effect of Loading Rate on the Fracture Behavior of Nuclear Piping Materials Under Cyclic Loading Conditions

  • Kim, Jin Weon;Choi, Myung Rak;Kim, Yun Jae
    • Nuclear Engineering and Technology
    • /
    • 제48권6호
    • /
    • pp.1376-1386
    • /
    • 2016
  • This study investigated the loading rate effect on the fracture resistance under cyclic loading conditions to understand clearly the fracture behavior of piping materials under seismic conditions. J-R fracture toughness tests were conducted under monotonic and cyclic loading conditions at various displacement rates at room temperature and the operating temperature of nuclear power plants (i.e., $316^{\circ}C$). SA508 Gr.1a low-alloy steel and SA312 TP316 stainless steel piping materials were used for the tests. The fracture resistance under a reversible cyclic load was considerably lower than that under monotonic load regardless of test temperature, material, and loading rate. Under both cyclic and monotonic loading conditions, the fracture behavior of SA312 TP316 stainless steel was independent of the loading rate at both room temperature and $316^{\circ}C$. For SA508 Gr.1a lowalloy steel, the loading rate effect on the fracture behavior was appreciable at $316^{\circ}C$ under cyclic and monotonic loading conditions. However, the loading rate effect diminished when the cyclic load ratio of the load (R) was -1. Thus, it was recognized that the fracture behavior of piping materials, including seismic loading characteristics, can be evaluated when tested under a cyclic load of R = -1 at a quasistatic loading rate.

Response of integral abutment bridges under a sequence of thermal loading and seismic shaking

  • Tsinidis, Grigorios;Papantou, Maria;Mitoulis, Stergios
    • Earthquakes and Structures
    • /
    • 제16권1호
    • /
    • pp.11-28
    • /
    • 2019
  • This article investigates the response of Integral Abutment Bridges (IAB) when subjected to a sequence of seasonal thermal loading of the deck followed by ground seismic shaking in the longitudinal direction. Particular emphasis is placed on the effect of pre-seismic thermal Soil-Structure Interaction (SSI) on the seismic performance of the IAB, as well as on the ability of various backfills configurations, to minimize the unfavorable SSI effects. A series of two-dimensional numerical analyses were performed for this purpose, on a complete backfill-integral bridge-foundation soil system, subjected to seasonal cyclic thermal loading of the deck, followed by ground seismic shaking, employing ABAQUS. Various backfill configurations were investigated, including conventional dense cohesionless backfills, mechanically stabilized backfills and backfills isolated by means of compressive inclusions. The responses of the investigated configurations, in terms of backfill deformations and earth pressures, and bridge resultants and displacements, were compared with each other, as well as with relevant predictions from analyses, where the pre-seismic thermal SSI effects were neglected. The effects of pre-seismic thermal SSI on the seismic response of the coupled IAB-soil system were more evident in cases of conventional backfills, while they were almost negligible in case of IAB with mechanically stabilized backfills and isolated abutments. Along these lines, reasonable assumptions should be made in the seismic analysis of IAB with conventional sand backfills, to account for pre-seismic thermal SSI effects. On the contrary, the analysis of the SSI effects, caused by thermal and seismic loading, can be disaggregated in cases of IAB with isolated backfills.

Dynamic equivalent model of a SMART control rod drive mechanism for a seismic analysis

  • Ahn, Kwanghyun;Lee, Jae-Seon
    • Nuclear Engineering and Technology
    • /
    • 제52권8호
    • /
    • pp.1834-1846
    • /
    • 2020
  • The SMART (System-integrated Modular Advanced ReacTor) is an integral-type small modular reactor developed by KAERI (Korea Atomic Energy Research Institute). This paper discusses the development of a dynamic equivalent model of the SMART control rod drive mechanism that can be efficiently utilized for complicated analysis during the design of the SMART. A semi-empirical approach is used to develop the equivalent model; that is, the equivalent model is defined analytically and verified empirically. Two types of tests, dynamic characteristics tests and seismic loading tests, are conducted for the development and verification of the dynamic equivalent model, respectively. Acceleration response spectra from the seismic analysis based on the developed equivalent model show good agreement with those from the seismic loading tests.

Optimum design of steel space truss towers under seismic effect using Jaya algorithm

  • Artar, Musa;Daloglu, Ayse T.
    • Structural Engineering and Mechanics
    • /
    • 제71권1호
    • /
    • pp.1-12
    • /
    • 2019
  • This study investigates optimum designs of steel space truss towers under seismic loading by using Jaya optimization algorithm. Turkish Earthquake Code (2007) specifications are applied on optimum designs of steel space truss towers under the seismic loading for different local site classes depending on different soil groups. The proposed novel algorithm does not have any algorithm-specific control parameters and depends only a simple revision equation. Therefore, it provides a practical solution for structural optimization problems. Optimum solutions of the different steel truss examples are carried out by selecting suitable W sections taken from American Institute of Steel Construction (AISC). In order to obtain optimum solutions, a computer program is coded in MATLAB in corporated with SAP2000-OAPI (Open Application Programming Interface). The stress and displacement constraints are applied on the design problems according to AISC-ASD (Allowable Stress Design) specifications. Firstly, a benchmark truss problem is examined to see the efficiency of Jaya optimization algorithm. Then, two different multi-element truss towers previously solved with other methods without seismic loading in literature are designed by the proposed algorithm. The first space tower is a 582-member space truss with the height of 80 m and the second space tower is a 942-member space truss of about 95 m height. The minimum optimum designs obtained with this novel algorithm for the case without seismic loading are lighter than the ones previously attained in the literature studies. The results obtained in the study show that Jaya algorithm is a practical and robust optimization method for structural optimization problems. Moreover, incorporation of the seismic loading causes significant increase in the minimum design weight.

격자형 유닛 상세를 가진 단면증설공법으로 보강된 철근콘크리트 기둥의 하중가력패턴에 따른 구조성능평가 (An Evaluation of Structural Performance of Reinforced Concrete Column Retrofitted with Grid Type Unit Details of Jacketing Method under Loading Patterns)

  • 문홍비;노경민;이영학
    • 한국공간구조학회논문집
    • /
    • 제22권2호
    • /
    • pp.29-37
    • /
    • 2022
  • The collapse of reinforced concrete (RC) frame buildings is mainly caused by the failure of columns. To prevent brittle failure of RC column, numerous studies have been conducted on the seismic performance of strengthened RC columns. Concrete jacketing method, which is one of the retrofitting method of RC members, can enhance strength and stiffness of original RC column with enlarged section and provide uniformly distributed lateral load capacity throughout the structure. The experimental studies have been conducted by many researchers to analyze seismic performance of seismic strengthened RC column. However, structures which have plan and vertical irregularities shows torsional behavior, and therefore it causes large deformation on RC column when subjected to seismic load. Thus, test results from concentric cyclic loading can be overestimated comparing to eccentric cyclic test results, In this paper, two kinds of eccentric loading pattern was suggested to analyze structural performance of RC columns, which are strengthened by concrete jacketing method with new details in jacketed section. Based on the results, it is concluded that specimens strengthened with new concrete jacketing method increased 830% of maximum load, 150% of maximum displacement and changed the failure modes of non-strengthened RC columns.

Loading rate effect on superelastic SMA-based seismic response modification devices

  • Zhu, Songye;Zhang, Yunfeng
    • Earthquakes and Structures
    • /
    • 제4권6호
    • /
    • pp.607-627
    • /
    • 2013
  • The application of shape memory alloys (SMAs) to the seismic response reduction of civil engineering structures has attracted growing interest due to their self-centering feature and excellent fatigue performance. The loading rate dependence of SMAs raises a concern in the seismic analysis of SMA-based devices. However, the implementation of micromechanics-based strain-rate-dependent constitutive models in structural analysis software is rather complicated and computationally demanding. This paper investigates the feasibility of replacing complex rate-dependent models with rate-independent constitutive models for superelastic SMA elements in seismic time-history analysis. Three uniaxial constitutive models for superelastic SMAs, including one rate-dependent thermomechanical model and two rate-independent phenomenological models, are considered in this comparative study. The pros and cons of the three nonlinear constitutive models are also discussed. A parametric study of single-degree-of-freedom systems with different initial periods and strength reduction factors is conducted to examine the effect of the three constitutive models on seismic simulations. Additionally, nonlinear time-history analyses of a three-story prototype steel frame building with special SMA-based damping braces are performed. Two suites of seismic records that correspond to frequent and design basis earthquakes are used as base excitations in the seismic analyses of steel-braced frames. The results of this study show that the rate-independent constitutive models, with their parameters properly tuned to dynamic test data, are able to predict the seismic responses of structures with SMA-based seismic response modification devices.

Seismic behavior of Q690 circular HCFTST columns under constant axial loading and reversed cyclic lateral loading

  • Wang, Jiantao;Sun, Qing
    • Steel and Composite Structures
    • /
    • 제32권2호
    • /
    • pp.199-212
    • /
    • 2019
  • This paper presents an investigation on seismic behavior of out-of-code Q690 circular high-strength concrete-filled thin-walled steel tubular (HCFTST) columns made up of high-strength (HS) steel tubes (yield strength $f_y{\geq}690MPa$). Eight Q690 circular HCFTST columns with various diameter-to-thickness (D/t) ratios, concrete cylinder compressive strengths ($f_c$) and axial compression ratios (n) were tested under the constant axial loading and reversed cyclic lateral loading. The obtained lateral load-displacement hysteretic curves, energy dissipation, skeleton curves and ductility, and stiffness degradation were analyzed in detail to reflect the influences of tested parameters. Subsequently, a simplified shear strength model was derived and validated by the test results. Finally, a finite element analysis (FEA) model incorporating a stress triaxiality dependent fracture criterion was established to simulate the seismic behavior. The systematic investigation indicates the following: compared to the D/t ratio and axial compression ratio, improving the concrete compressive strength (e.g., the HS thin-walled steel tube filled with HS concrete) had a slight influence on the ductility but an obvious enhancement of energy dissipation and peak load; the simplified shear strength model based on truss mechanism accurately predicted the shear-resisting capacity; and the established FEA model incorporating steel fracture criterion simulated well the seismic behavior (e.g., hysteretic curve, local buckling and fracture), which can be applied to the seismic analysis and design of Q690 circular HCFTST columns.