Browse > Article
http://dx.doi.org/10.1016/j.net.2020.01.009

Dynamic equivalent model of a SMART control rod drive mechanism for a seismic analysis  

Ahn, Kwanghyun (SMART Technology Development Division, Korea Atomic Energy Research Institute)
Lee, Jae-Seon (SMART Technology Development Division, Korea Atomic Energy Research Institute)
Publication Information
Nuclear Engineering and Technology / v.52, no.8, 2020 , pp. 1834-1846 More about this Journal
Abstract
The SMART (System-integrated Modular Advanced ReacTor) is an integral-type small modular reactor developed by KAERI (Korea Atomic Energy Research Institute). This paper discusses the development of a dynamic equivalent model of the SMART control rod drive mechanism that can be efficiently utilized for complicated analysis during the design of the SMART. A semi-empirical approach is used to develop the equivalent model; that is, the equivalent model is defined analytically and verified empirically. Two types of tests, dynamic characteristics tests and seismic loading tests, are conducted for the development and verification of the dynamic equivalent model, respectively. Acceleration response spectra from the seismic analysis based on the developed equivalent model show good agreement with those from the seismic loading tests.
Keywords
SMART; Control rod drive mechanism; Seismic analysis; Seismic loading test;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K.K. Kim, W.J. Lee, S. Choi, H.R. Kim, J.J. Ha, SMART: the first licensed advanced integral reactor, J. Energy Power Eng. 8 (2014) 94-102.
2 ASME Boiler and Pressure Vessel Committee on Nuclear Power, ASME Boiler and Pressure Vessel Code Section II Part A - Ferrous Material Specifications, ASME, New York, 2015.
3 ASME Boiler and Pressure Vessel Committee on Nuclear Power, ASME Boiler and Pressure Vessel Code Section II Part D - Properties, ASME, New York, 2015.
4 ANSYS User's Manual, 2017. Version 17.2.
5 U.S. Nuclear Regulatory Commission, Design Response Spectra for Seismic Design of Nuclear Power Plants, Regulatory Guide 1.60 Rev.2, U.S. Nuclear Regulatory Commission, Washington DC, 2014.
6 M.D. Trifunac, Zero baseline correction of strong-motion accelerograms, Bull. Seismol. Soc. Am. 61 (1971) 1201-1211.
7 J.G. Kim, P.S. Lee, An enhanced Craig-Bampton method, Int. J. Numer. Methods Eng. 103 (2015) 79-93.   DOI
8 S. Chang, S. Baek, K.O. Kim, M. Cho, Structural system identification using degree of freedom-based reduction method and hierarchical clustering algorithm, J. Sound Vib. 346 (2015) 139-152.   DOI
9 J.G. Kim, Y.J. Park, G.H. Lee, D.N. Kim, A general model reduction with primal assembly in structural dynamics, Comput. Methods Appl. Mech. Eng. 324 (2017) 1-28.   DOI
10 V. Varma, G.R. Reddy, K.K. Vaze, H.S. Kushwaha, Simplified approach for seismic analysis of structures, Int. J. Struct. Stab. Dyn. 2 (2002) 207-225.   DOI
11 T.W. Kim, K.B. Park, K.H. Jeong, G.M. Lee, S. Choi, Dynamic characteristics of the integral reactor SMART, J. Korean Nucl. Soc. 33 (2001) 111-120.
12 R.I. Levin, N.A.J. Lieven, Dynamic finite element model updating using simulated annealing and genetic algorithms, Mech. Syst. Signal Process. 12 (1998) 91-120.   DOI
13 J.B. Park, Y. Choi, S.J. Lee, N.C. Park, K.S. Park, Y.P. Park, C.I. Park, Modal characteristics of the APR1400 nuclear reactor internals for seismic analysis, Nucl. Eng. Technol. 46 (2014) 689-698.   DOI
14 J.S. Lee, G.M. Lee, J.W. Kim, Design optimization of CRDM motor housing, J. Magn. 21 (2016) 586-592.   DOI
15 J.E. Mottershead, M.I. Friswell, Model updating in structural dynamics: a survey, J. Sound Vig. 167 (1993) 347-375.   DOI
16 M.J. Ratcliffe, N.A.J. Lieven, An improved method for parameter selection in finite element model updating, Aeronaut. J. 102 (1998) 321-329.
17 G.H. Kim, Y.S. Park, An improved updating parameter selection method and finite element model update using multiobjective optimization technique, Mech. Syst. Signal Process. 18 (2004) 59-78.   DOI
18 J.H. Lim, D.S. Hwang, D. Sohn, J.G. Kim, Improving the reliability of the frequency response function through semi-direct finite element model updating, Aero. Sci. Technol. 54 (2016) 59-71.   DOI
19 C. Papadimitriou, D.C. Papadioti, Component mode synthesis techniques for finite element model updating, Comput. Struct. 126 (2013) 15-28.   DOI
20 H.A. Jensen, E. Millas, D. Kusanovic, C. Papadimitiou, Model-reduction techniques for Bayesian finite element model updating using dynamic response data, Comput. Methods Appl. Mech. Eng. 279 (2014) 301-324.   DOI
21 U.S. Nuclear Regulatory Commission, Combining Modal Responses and Spatial Components in Seismic Response Analysis, Regulatory Guide 1.92 Rev.3, U.S. Nuclear Regulatory Commission, Washington DC, 2012.