Browse > Article
http://dx.doi.org/10.12989/sem.2019.71.1.001

Optimum design of steel space truss towers under seismic effect using Jaya algorithm  

Artar, Musa (Institute of 1Department of Civil Engineering, Bayburt University)
Daloglu, Ayse T. (Department of Civil Engineering, Karadeniz Technical University)
Publication Information
Structural Engineering and Mechanics / v.71, no.1, 2019 , pp. 1-12 More about this Journal
Abstract
This study investigates optimum designs of steel space truss towers under seismic loading by using Jaya optimization algorithm. Turkish Earthquake Code (2007) specifications are applied on optimum designs of steel space truss towers under the seismic loading for different local site classes depending on different soil groups. The proposed novel algorithm does not have any algorithm-specific control parameters and depends only a simple revision equation. Therefore, it provides a practical solution for structural optimization problems. Optimum solutions of the different steel truss examples are carried out by selecting suitable W sections taken from American Institute of Steel Construction (AISC). In order to obtain optimum solutions, a computer program is coded in MATLAB in corporated with SAP2000-OAPI (Open Application Programming Interface). The stress and displacement constraints are applied on the design problems according to AISC-ASD (Allowable Stress Design) specifications. Firstly, a benchmark truss problem is examined to see the efficiency of Jaya optimization algorithm. Then, two different multi-element truss towers previously solved with other methods without seismic loading in literature are designed by the proposed algorithm. The first space tower is a 582-member space truss with the height of 80 m and the second space tower is a 942-member space truss of about 95 m height. The minimum optimum designs obtained with this novel algorithm for the case without seismic loading are lighter than the ones previously attained in the literature studies. The results obtained in the study show that Jaya algorithm is a practical and robust optimization method for structural optimization problems. Moreover, incorporation of the seismic loading causes significant increase in the minimum design weight.
Keywords
Jaya algorithm; steel space truss tower; optimum design; seismic loading; MATLAB-SAP2000 OAPI;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Hasancebi, O., Carbas, S. and Saka, M.P. (2010), "Improving performance of simulated annealing in structural optimization", Struct. Multidiscip. O., 41(2), 189-203. ttps://doi.org/10.1007/s00158-009-0418-9.   DOI
2 Hasancebi, O. and Carbas, S. (2014) "Bat inspired algorithm for discrete size optimization of steel frames", Adv. Eng. Softw., 67, 173-185. https://doi.org/10.1016/j.advengsoft.2013.10.003.   DOI
3 Hasancebi O. (2008), "Adaptive evolution strategies in structural optimization: enhancing their computational performance with applications to large-scale structures", Comput. Struct., 86(1-2), 119-132. https://doi.org/10.1016/j.compstruc.2007.05.012.   DOI
4 Hasancebi, O., Teke, T. and Pekcan, O. (2013), "A bat-inspired algorithm for structural optimization", Comput. Struct., 128, 77-90. https://doi.org/10.1016/j.compstruc.2013.07.006.   DOI
5 Kaveh, A. (2016), Applications of Metaheuristic Optimization Algorithms in Civil Engineering, Springer, Germany.
6 Kelesoglu, O., and Ulker, M. (2005), "Multi-objective fuzzy optimization of space trusses by Ms-Excel", Adv. Eng. Softw., 36(8), 549-553. https://doi.org/10.1016/j.advengsoft.2005.02.001.   DOI
7 Lamberti, L. and Pappalettere, C. (2011), "Metaheuristic design optimization of skeletal structures: A review", Comput. Technol. Rev., 4(1), 1-32.   DOI
8 Li, L.J., Huang, Z.B., and Liu, F.A. (2009), "A heuristic particle swarm optimization method for truss structures with discrete variables", Comput. Struct., 87(7-8), 435-443. https://doi.org/10.1016/j.compstruc.2009.01.004.   DOI
9 MATLAB (2009), "The Language of Technical Computing", The Mathworks, Natick, MA, USA.
10 Rao, R.V. and Patel, V. (2012), "An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems", J. Industrial Eng. Comput., 3(4), 535-560. http://dx.doi.org/10.5267/j.ijiec.2012.03.007.
11 Togan, V. and Daloglu, A.T. (2008), "An improved genetic algorithm with initial population strategy and self-adaptive member grouping", Comput. Struct., 86(11-12), 1204-1218. https://doi.org/10.1016/j.compstruc.2007.11.006.   DOI
12 Saka, M.P. and Geem, Z.W. (2013), "Mathematical and metaheuristic applications in design optimization of steel frame structures: An extensive review", Math. Problems Eng., 2013,1-33. http://dx.doi.org/10.1155/2013/271031.   DOI
13 Saka, M.P. (2014), "Shape and topology optimization design of skeletal structures using metaheuristic algorithms: A review", Comput. Technol. Rev., 9, 31-68.   DOI
14 SAP2000 (2008), "Integrated Finite Elements Analysis and Design of Structures", Computers and Structures, Inc.; Berkeley, CA, USA.
15 Turkish Earthquake codes (2007), "Specification for structures to be built in disaster areas", Turkey.
16 Rao R.V. and Waghmare, G.G. (2017), "A new optimization algorithm for solving complex constrained design optimization problems", Eng. Optimiz., 49(1), 60-83. https://doi.org/10.1080/0305215X.2016.1164855.   DOI
17 Rao, R.V., More, K.C., Taler, J. and Oclon., P. (2016), "Dimensional optimization of a micro-channel heat sink using Jaya algorithm", Appl. Therm. Eng., 103, 572-582. https://doi.org/10.1016/j.applthermaleng.2016.04.135.   DOI
18 Rao, R.V., Rai, D.P. and Balic, J. (2016), "Surface grinding process optimization using Jaya algorithm", Adv. Intelligent Syst. Comput., 411, 487-495. https://doi.org/10.1007/978-81-322-2731-1_46.   DOI
19 Rao, R.V., and More, K.C. (2017), "Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm", Energy Conversion Management, 140, 24-35. https://doi.org/10.1016/j.enconman.2017.02.068.   DOI
20 Rajeev, S. and Krishnamoorthy, C.S. (1992), "Discrete optimization of structures using genetic algorithms", J. Struct. Eng. ASCE, 118(5), 1233-1250. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1233).   DOI
21 Saka, M.P. (2007), "Optimum design of steel frames using stochastic search techniques based on natural phenomena: A review", Civil Engineering Computations: Tools and Techniques, Saxe-Coburg Publications, Stirlingshire, United Kingdom, 105-147.
22 Saka, M.P. (2009), "Optimum design of steel sway frames to BS5950 using harmony search algorithm", J. Constr. Steel Res., 65(1), 36-43. https://doi.org/10.1016/j.jcsr.2008.02.005.   DOI
23 Saka, M.P. and Dogan, E. (2012), "Recent developments in metaheuristic algorithms: A review", Comput. Technol. Rev., 5(4), 31-78.   DOI
24 Rao, R.V. (2016), "Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems", J. Industrial Eng. Comput., 7, 19-34. http://dx.doi.org/10.5267/j.ijiec.2015.8.004.
25 Artar, M. (2016d), "Optimum design of space truss tower using teaching-learning based optimization", Dicle University Journal of Engineering. 7(13), 471-480. https://dergipark.org.tr/dumf/issue/29221/312786.
26 AISC-ASD (1989), "Manual of Steel Construction: Allowable Stress Design", American Institute of Steel Construction; Chicago, USA.
27 Artar, M. and Daloglu, A.T. (2015), "Optimum design of steel space frames with composite beams using genetic algorithm", Steel Compos. Struct., 19(2), 503-519. https://doi.org/10.12989/scs.2015.19.2.503.   DOI
28 Artar, M. (2016a), "Optimum design of steel space frames under earthquake effect using harmony search", Struct. Eng. Mech., 58(3), 597-612. http://dx.doi.org/10.12989/sem.2016.58.3.597.   DOI
29 Artar, M. (2016b), "Optimum design of braced steel frames via teaching learning based optimization", Steel Compos. Struct., 22(4), 733-744. http://dx.doi.org/10.12989/scs.2016.22.4.733.   DOI
30 Artar, M. (2016c), "A comparative study on optimum design of multi-element truss structures", Steel Compos. Struct., 22(3), 521-535. http://dx.doi.org/10.12989/scs.2016.22.3.521.   DOI
31 Artar, M., Catar, R. and Daloglu, A.T. (2017), "Optimum design of steel bridges including corrosion effect using TLBO", Struct. Eng. Mech., 63(5) 607-615. http://dx.doi.org/10.12989/sem.2017.63.5.607.   DOI
32 Aydogdu, I, Carbas, S. and Akin., A. (2017), "Effect of Levy Flight on the discrete optimum design of steel skeletal structures using metaheuristics", Steel Compos. Struct., 24(1), 93-112. http://dx.doi.org/10.12989/scs.2017.24.1.093.   DOI
33 Aydogdu, I., Efe, P. Yetkin, M. and Akin., A. (2017), "Optimum design of steel space structures using social spider optimization algorithm with spider jump technique", Struct. Eng. Mech., 62(3), 259-272. http://dx.doi.org/10.12989/sem.2017.62.3.259.   DOI
34 Carbas, S. (2017), "Optimum structural design of spatial steel frames via biogeography-based optimization", Neural Comput. Appl., 28(6), 1525-1539. https://doi.org/10.1007/s00521-015-2167-6.   DOI
35 Aydogdu, I. and Saka, M.P. (2012), "Ant colony optimization of irregular steel frames including elemental warping effect", Adv. Eng. Softw., 44(1), 150-169. https://doi.org/10.1016/j.advengsoft.2011.05.029.   DOI
36 Camp, C.V. and Bichon, B.J. (2004), "Design of space trusses using ant colony optimization", J. Struct. Eng. 130 (5), 741-751. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:5(741).   DOI
37 Carbas S. (2016), "Design optimization of steel frames using an enhanced firefly algorithm", Eng. Optimiz., 48(12), 2007-2025. https://doi.org/10.1080/0305215X.2016.1145217.   DOI
38 Degertekin, S.O. (2012) "Optimum design of geometrically nonlinear steel frames using artificial bee colony algorithm", Steel Compos. Struct., 12(6), 505-522. https://doi.org/10.12989/scs.2012.12.6.505.   DOI
39 Coello, C.A.C. (2002), "Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art", Comput. Methods Appl. Mech. Eng., 191, 1245-1287. https://doi.org/10.1016/S0045-7825(01)00323-1.   DOI
40 Daloglu, A.T, Artar, M., Ozgan, K. and Karakas A.I. (2016), "Optimum design of steel space frames including soil-structure interaction", Struct. Multidiscip. O., 54(1), 117-131. https://doi.org/10.1007/s00158-016-1401-x.   DOI
41 Degertekin, S.O., Lamberti, L. and Hayalioglu, M.S. (2017), "Heat transfer search algorithm for sizing optimization of truss structures", Lat. Am. J. Solids Stru., 14(3), 373-397. http://dx.doi.org/10.1590/1679-78253297.   DOI
42 Hasancebi, O., and Erbatur, F. (2002), "On efficient use of simulated annealing in complex structural optimization problems", Acta Mech., 157(1-4), 27-50. https://doi.org/10.1007/BF01182153.   DOI
43 Degertekin, S.O., and Geem, Z.W. (2016), "Metaheuristic optimization in structural engineering", Model Optim. Sci. Tech., 7, 75-93. https://doi.org/10.1007/978-3-319-26245-1_4.
44 Dede, T. and Togan, V. (2015), "A teaching learning based optimization for truss structures with frequency constraints", Struct. Eng. Mech., 53(4), 833-845. http://dx.doi.org/10.12989/sem.2015.53.4.833.   DOI
45 Hadidi, A. and Rafiee, A. (2014) "Harmony search based, improved Particle Swarm Optimizer for minimum cost design of semi-rigid steel frames", Struct. Eng. Mech., 50(3), 323-347. http://dx.doi.org/10.12989/sem.2014.50.3.323.   DOI
46 Hasancebi, O., Carbas, S., Dogan, E., Erdal, F. and Saka, M.P. (2009) "Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures", Comput. Struct., 87(5-6), 284-302. https://doi.org/10.1016/j.compstruc.2009.01.002.   DOI