• Title/Summary/Keyword: Seismic design criteria

Search Result 231, Processing Time 0.271 seconds

Cooling Schedules in Simulated Annealing Algorithms for Optimal Seismic Design of Plane Frame Structures (평면골조의 최적내진설계를 위한 SA 알고리즘의 냉각스케줄)

  • 이상관;박효선;박성무
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.458-465
    • /
    • 2000
  • In the field of structural optimization simulated annealing (SA) algorithm has widely been adopted as an optimizer with the positive features of SA such as simplicity of the algorithm and possibility of finding global solution However, annealing process of SA algorithm based on random generator with the zeroth order structural information requires a large of number of iterations highly depending on cooling schedules and stopping criteria. In this paper, MSA algorithm is presented in the form of two phase annealing process with the effective cooling schedule and stopping criteria. With the application to optimal seismic design of steel structures, the performance of the proposed MSA algorithm has been demonstrated with respect to stability and global convergence of the algorithm

  • PDF

Optimal Seismic Reliability of Bridges Based on Minimum Expected Life Cycle Costs (최소기대비용에 기초한 교량의 최적내진신뢰성)

  • 조효남;임종권;심성택
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.249-256
    • /
    • 1999
  • This study is intended to propose a systematic procedure for the development of the reliability-based seismic safety and cost-effective Performance criteria for design and upgrading of long span PC bridges. In the paper, a set of cost function models for life cycle cost analysis of bridges is proposed. The total life cycle cost functions consist of initial cost and direct/indirect damage costs considering repair/replacement costs, human losses and property damage costs, road user costs, and indirect regional economic losses. The damage costs are successfully expressed in terms of Park-Ang median global damage indices and damage probabilities. The proposed approach is successfully applied to model bridges in both regions of a moderate seismicity area like Seoul, Korea and a high one like Tokyo, Japan. It may be expected that the proposed approach can be effectively utilized for the development of cost-effective performance criteria for design and upgrading of various types of bridges as well as long span PC bridges.

  • PDF

Evaluation on the Seismic Performance of Port Structures using GIS (GIS를 이용한 항만구조물의 내진성능 평가기법)

  • Kim, Na Young;Kang, In Joon;Choi, Hyun;Kim, Tae Hyo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.31-38
    • /
    • 2014
  • Seismic of the Korean Peninsula is terrible about 1,900 times. Lately, because of a world-occurring seismic, investment of seismic design about ground & structures come to the force as means to protect national life and property. This study evaluated having seismic performance above design criteria among the existing port structures not applied seismic design. Based on the results, classified apprehensive area of liquefaction from seismic performance evaluation and made hazards according to liquefaction risk & structural performance using the analysis of seismic performance and GIS method. After Establishing quantitative & detailed input database through liquefaction evaluation and seismic performance, analysed all seismic data are used directly valuation data on repair reinforcement for apprehensive area of earthquakes.

Seismic Performance Assessment of Circular Reinforced Concrete Bridge Piers with Confinement Steel: I. Experiments and Analyses (원형 철근콘크리트 교각의 횡방향 철근에 따른 내진성능평가 : I. 실험 및 해석)

  • Kim, Tae-Hoon;Park, Se-Jin;Kim, Young-Jin;Kang, Hyeong-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.339-349
    • /
    • 2006
  • The purpose of this study is to investigate the seismic behavior of circular reinforced concrete bridge piers with confinement steel and to provide the data for developing improved seismic design criteria. Fourteen circular reinforced concrete bridge piers were tested under a constant axial load and a cyclically reversed horizontal load. The accuracy and objectivity of the assessment process may be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. In the companion paper, the proposed numerical method for the seismic performance assessment of circular reinforced concrete bridge piers with confinement steel is verified by comparison with experimental results.

Seismic deformation demands on rectangular structural walls in frame-wall systems

  • Kazaz, Ilker
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.329-350
    • /
    • 2016
  • A parametric study was conducted to investigate the seismic deformation demands in terms of drift ratio, plastic base rotation and compression strain on rectangular wall members in frame-wall systems. The wall index defined as ratio of total wall area to the floor plan area was kept as variable in frame-wall models and its relation with the seismic demand at the base of the wall was investigated. The wall indexes of analyzed models are in the range of 0.2-2%. 4, 8 and 12-story frame-wall models were created. The seismic behavior of frame-wall models were calculated using nonlinear time-history analysis and design spectrum matched ground motion set. Analyses results revealed that the increased wall index led to significant reduction in the top and inter-story displacement demands especially for 4-story models. The calculated average inter-story drift decreased from 1.5% to 0.5% for 4-story models. The average drift ratio in 8- and 12-story models has changed from approximately 1.5% to 0.75%. As the wall index increases, the dispersion in the calculated drifts due to ground motion variability decreased considerably. This is mainly due to increase in the lateral stiffness of models that leads their fundamental period of vibration to fall into zone of the response spectra that has smaller dispersion for scaled ground motion data set. When walls were assessed according to plastic rotation limits defined in ASCE/SEI 41, it was seen that the walls in frame-wall systems with low wall index in the range of 0.2-0.6% could seldom survive the design earthquake without major damage. Concrete compressive strains calculated in all frame-wall structures were much higher than the limit allowed for design, ${\varepsilon}_c$=0.0035, so confinement is required at the boundaries. For rectangular walls above the wall index value of 1.0% nearly all walls assure at least life safety (LS) performance criteria. It is proposed that in the design of dual systems where frames and walls are connected by link and transverse beams, the minimum value of wall index should be greater than 0.6%, in order to prevent excessive damage to wall members.

A Study on Algorithm for Determining Seismic Improvement Priority of Highway Bridges (도로교 내진보강 우선순위 결정을 위한 알고리즘에 관한 연구)

  • Kim, Hyung-Gyu;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.138-147
    • /
    • 2018
  • With the recent series of damage caused by earthquakes in Korea, such as Gyeongju and Pohang, we know that Korea is no longer a safe zone for earthquakes and that we need to be prepared for them. In addition, bridges built prior to the introduction of seismic design concepts remain without adequate seismic reinforcement measures, and earthquake reinforcement should be performed efficiently considering economic and structural safety. Preliminary assessment of seismic performance of existing bridges is divided into four seismic groups, taking into account seismicity, vulnerability and Impact, considering the magnitude of the existing bridge's seismic, and prioritization for further evaluation of seismic performance. In this study, unlike the existing anti-seismic reinforcement priority method, scores are calculated based on the seismic design criteria applied to bridges, importance coefficient of the bridge including the zone coefficient and the Importance, vulnerability index of the bridge including the soil condition and the elapsed years, detail coefficient of the bridge including the superstructure form, the span length, the width, the height, the design load, and the daily traffic volume. The calculated score items will be weighted and grouped according to the results. Using this, a simpler and more efficient algorithm was proposed to determine the priority of seismic reinforcement on a bridge.

Performance Based Seismic Design - State of Practice 2012 in the United States of America

  • Klemencic, Ron;Fry, J. Andrew;Hooper, John;Baxter, Robert;Morgen, Brian;Solberg, Kevin;Zaleski, Krzysztof
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.3
    • /
    • pp.149-154
    • /
    • 2012
  • This paper presents a summary of the state of the practice for Performance Based Seismic Design (PBSD) in the United States. While it is not included in the prescriptive provisions of the United States' building codes, the PBSD procedure has been successfully implemented for two decades. The recent publication of the Guidelines for Performance-Based Seismic Design of Tall Buildings by the Pacific Earthquake Engineering Research Center (PEER) illustrates the fact that the engineering community has embraced this procedure and provides a thoughtful set of recommendations to building designers who intend to implement PBSD. The key parameters currently required for a PBSD also are outlined, such as seismic hazard definition, modeling procedures, and acceptance criteria. These Guidelines will serve as the basis for many PBSD projects in the coming years and as such are a common reference used throughout this paper. Finally, a brief summation of recent PBSD projects in the United States is presented.

Development of Seismic Performance Estimation Service of Bridge through Seismic Risk Assessment (지진위험도평가 방법을 통한 교량의 내진성능 추정 서비스 개발)

  • Cho, Han Min;Lee, Jin Hyuk;Park, Ki Tae;Kim, Kun Soo;Jung, Kyu San;Kim, Jae Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.535-542
    • /
    • 2023
  • In order to understand the seismic performance of a bridge, it is common to review through seismic performance evaluation and numerical analysis of the target bridge. Seismic performance evaluation and review through numerical analysis are analysis methods for specific target bridges, and many problems can arise in each management body managing bridges nationwide. Therefore, in this study, research was conducted to estimate the seismic performance of public bridges with various types and characteristics. Seismic performance was estimated by applying the seismic risk assessment method, calculating the seismic fragility curve for the type and specifications of the bridge, and estimating the seismic performance of the bridge in use by applying the domestic seismic design standard. In addition, by installing it on the platform, service items were established so that users can easily review the estimation of seismic performance of domestic bridges.

A Study on the Development of the Seismic Fragility Functions of the High Speed Railway Tunnels in use (기존 고속철도 터널의 지진취약도 함수 개발에 관한 연구)

  • Kim, Hongkyoon;Shin, Chulsik;Lee, Taehyung;Lee, Jonggun;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.11
    • /
    • pp.67-75
    • /
    • 2014
  • In this study, the staged seismic performance evaluations were conducted to the 91 high speed railway tunnels in use for checking whether to comply with the recent design criteria or not. In addition, the seismic fragility functions of the tunnels were developed to allow the probabilistic risk assessment. The results of the staged seismic performance evaluations which consist of a preliminary assessment and a detailed assessment, show that the tunnels comply with the recent design criteria. With reference to the results of previous studies, a form of the proposed seismic fragility functions was set as a log-normal distribution by PGA, and the parameters of the functions were determined by using the probability of damage for the design PGA level. The seismic fragility functions were developed for each types (Cut & Cover, NATM) of tunnels. The seismic fragility functions from this study and the existing research results (FEMA, 2004) were compared to evaluate the seismic performance level of the tunnels, as a result the tunnels of this study were relatively superior to the ASSM tunnels on the seismic performance.

Seismic Performance Evaluation Procedure and Reinforcement Direction of Subway Lines 1~4 (지하철 1~4호선 내진성능 평가절차 및 보강방향)

  • Jang, Won-Rak;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.439-444
    • /
    • 2019
  • In this paper, the seismic performance evaluation of the subway lines 1~4 conducted from April 2010 to October 2013 for the existing structures that were not seismically designed based on the seismic design criteria of urban railways was studied. The detailed design of seismic reinforcement for the facilities requiring seismic reinforcement was summarized through the detailed design of the seismic reinforcement construction conducted from March to December 2018. As a result of the evaluation, 53.2km (total project cost of 322 billion won) of 141.5km of Lines 1~4 were considered to require seismic reinforcement, and finally, the company aims to secure a 100% earthquake-proof rate to withstand earthquake-scale 6.5 by 2020. This paper can be used as basic research data to evaluate and reinforce seismic performance of urban railways in the future.