• Title/Summary/Keyword: Seepage pressure

Search Result 174, Processing Time 0.028 seconds

The Effect of Rainfall on the Stability of Mudstone Slope in Consideration of Collapse Record (이암 절취사면의 붕괴이력을 고려한 강우침투에 따른 안정성 분석)

  • Jeon, Byeong-Chu;Lee, Su-Gon;Kim, Young-Muk;Chung, Sung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.2
    • /
    • pp.55-66
    • /
    • 2009
  • At the mudstone slope located on the roadside of the Seokri area in Donghae-myeon, Pohang, Gyeongsangbuk-do, this study was performed to analyze the effects of rainfall on the stability of slope through seepage analysis according to the precipitation type of the mudstone slope, referring to the actual case of slope failure. For this, precise geological survey, geophysical exploration and drilling survey for the slope where the failure occurred were performed and followed by analysis of detailed soil layer. For the section where failure surface located, the durability reduction of rocks was measured through slaking/swelling tests and the permeability was measured through in-situ permeability tests for each soil layer. In addition, the change of strength parameter and process of instability were analyzed by back analysis, using Talren 97 and Slope/W programs, in the slope. By applying different precipitation conditions to the geographical conditions of the slope that had actual failure records, the slope stability was analyzed by seepage analysis according to duration of rainfall and rise of groundwater level resulting from the flow of rainfall caused by development of geological structures and the slope surface condition.

PDSS Analysis on Partially Penetrated Band Drains in Soft Clay Ground (밴드드레인이 부분관입된 연약점토지반을 위한 PDSS 해석)

  • 정성교;은성민;백승훈;이대명
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.365-372
    • /
    • 1999
  • The plane deformation and spatial seepage(PDSS) analysis was developed to consider 3D flow of excess pore water as well as plane deformation of ground. Here is newly developed an equivalent model for PDSS analysis, which was the purpose to reduce number of finite elements and to take the effects of smear and well resistance into consideration. As the result of PDSS analysis with applying the new model, it is showed that the settlement-tin e relationship by PDSS agrees well with those of Plane strain(PS) and axisymmetric analyses, irrespective of existence of untreated layer. And the excess pore pressure distribution by PDSS is relatively agreed with that of axisymmetric analysis, not with that of PS.

  • PDF

Design and Construction of Bottom Drainage Tunnel and the Watertight Tunnel (배수형 터널과 방수형 터널의 설계와 시공)

  • Kim, Seung-Ryeol;Park, Gwang-Jun;Park, Bong-Gi
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.03a
    • /
    • pp.49-58
    • /
    • 1993
  • Reappraisal of the design and the construction concept of the bottom drainage tunnel has been made through the seepage analysis. An appropriate design approach for this tunnel has also been proposed. It was revealed from this study that water pressures acting on the concrete lining in the bottom dralnage tunnel much depend on the permeability of the surrounding ground, the source of water supply and the discharge capacity of dralnage facilities. The full release of these water pressures by the current drainage system could not be expected if this type of tunnel is constructed in the ground including alluvial deposits having a high permeability. The necessity of a proper reinforcement of the concrete lining or a modification of its shapes corresponding to the water pressure has been suggested.

  • PDF

Slope Instability Due to Rainfall (강우로 인한 사면 불안정)

  • 김상규;김영묵
    • Geotechnical Engineering
    • /
    • v.7 no.1
    • /
    • pp.53-68
    • /
    • 1991
  • This paper aims at the investigation of various seepage behavior when rainfall infiltarates into unsaturated ground and understanding of the mechanism for slope instability due to rainfall. For this purpose an experimental study is carried out for model slopes using the test equipment which can simulate various rainfall intensity. In addition, a numerical study is performed for the same dimension and boundary condition as the experimental model. From both the experimental test and numerical analysis the progress of wetting front with time, critical amounts of rainfall, and pore-water pressure development with time are know in detail and their effects on slope stability are described.

  • PDF

Analysis of Triggering Events of a Geosynthetic Wall Slope Failure within Slope Stability Perspective (사면안정측면에서의 보강토 옹벽 붕괴 요인 분석)

  • Yoo, Chung-Sik;Jung, Hye-Young;Jung, Hyuk-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.207-215
    • /
    • 2005
  • This paper presents a case history of a geosynthetics-reinforced segmental retaining wall, which collapsed during a sever rainfall immediately after the completion of the wall construction. In an attempt to identify possible causes for the collapse, a comprehensive investigation was carried out including physical and strength tests on the backfill, stability analyses on the as-built design based on the current design approaches, and slope stability analyses with pore pressure consideration. The investigation revealed that the inappropriate as-built design and the bad-quality backfill were mainly responsible for the collapse. This paper describes the site condition including wall design, details of the results of investigation and finally, lessons learned. Practical significance of the findings from this study is also discussed.

  • PDF

Analysis of seepage in trenching for surface desiccation of dredged soft ground (준설매립지반 표층건조처리를 위한 트렌치 굴착시 간극수의 침투해석)

  • 정하익;오인규;이용길;이승원;이영남
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.529-536
    • /
    • 2002
  • The purpose of this paper os to present and discuss some of flow and drain observed in modelling results. Because dredged fill ground of Yul-Chon located in the south coast of Korea is very soft, this ground should be improved after operation of surface stabilization. There are surface stabilization method such as chemical stabilization, desiccation, horizontally vacuum drain, replacement, and geosynthetics. In Yul-Chon, PTM(Progressive Trenching Method) is adopted to provide the necessity condition of surface desiccation. In the case trench in the dredged soft ground is formed by PTM equipment, pore water in the ground is drained through trench. There, drain and desiccation of surface ground increase, and bearing capacity is improved. In this research, when trench in the dredged soft ground is formed by PTM equipment, permeable characteristics and drain efficiency of pore-water are analyzed using SEEP/W software package. Results show variation of total head, pressure head, flux, hydraulic gradient, and flow quantity.

  • PDF

One-way Drainage Filter for Drain ability Improvement of Dam and Embankment (댐, 제방 배수기능 개선을 위한 일방향 배수필터)

  • Kim, Hong-Taek;Yoo, Chan-Ho;Kim, Hyun-Tae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.814-819
    • /
    • 2008
  • 본 연구에서는 기존의 배수필터를 개선함으로써 댐, 제방의 외부 유입 침투수를 차단할 수 있는 일방향 배수필터의 가능성을 확인하였다. 일방향 배수필터는 댐, 제방 내부의 침투수는 외부로 배출시키면서 외부의 유입 침투수는 차단하도록 여러 겹의 시트를 겹치도록 고안한 것으로, 본 연구에서는 일방향 배수필터의 가능성을 확인하고자 실내모형실험을 수행하였다. 실내모형실험을 진행하는 동안 계측되는 간극수압계를 이용하여 모형 댐, 제방의 거동을 확인하여 일방향 배수필터의 적용 가능여부를 확인하였다.

  • PDF

Characteristics of Seepage Water and Groundwater in a Coastal LPG Storage Cavern of Jeonnam (전남 해안 LPG 저장공동 유출수와 주변 지하수의 수질특성)

  • Lee, Jin-Yong;Choi, Mi-Jung;Kim, Hyun-Jung;Cho, Byung-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.4
    • /
    • pp.33-44
    • /
    • 2009
  • Water curtain of an underground LPG storage cavern is a facility to prevent leakage of high pressure gases, for which groundwater should flow freely towards the cavern and groundwater level also must be stably maintained. In this study, in order to evaluate qualities of seepage water and surrounding groundwater of an underground LPG storage cavern in Yeosu, 4 rounds of samplings, field measurements and laboratory analyses (February, May, August, October of 2007) were conducted. According to field measurements, pH was weak acidic to neutral but it gradually increased with time. Electrical conductivity (EC) of groundwater near a salt stack showed very high values between 10.47 and 38.50 mS/cm. Dissolved oxygen (DO) showed a very wide range of 0.20~8.74 mg/L and a mean of oxidation-reduction potential (ORP) was 159 mV, which indicated an oxidized condition. Levels of $Fe^{2+}$ and $Mn^{2+}$ were mostly less than 3 mg/L. All of seepage waters showed a Na-Cl type while only groundwater near the salt stack showed a Na-Cl type with a high total dissolved solid. The other groundwaters exhibited typical $Ca-HCO_3$ types. Levels of aerobic bacteria were mostly very high (573-39,520 CFU/mL). Based on the analyses of these hydrochemistry and biological characteristics, it is concluded that there are no particular problems in groundwater and seepage water, which not causing a trouble in the cavern operation. However, both for control of bio-clogging and for sustainable operation of the water curtain system, a regular hydrochemical and microbiological monitoring is required for the seepage water and surrounding groundwater.

Perforation optimization of hydraulic fracturing of oil and gas well

  • Zhu, Hai Yan;Deng, Jin Gen;Chen, Zi Jian;An, Feng Chen;Liu, Shu Jie;Peng, Cheng Yong;Wen, Min;Dong, Guang
    • Geomechanics and Engineering
    • /
    • v.5 no.5
    • /
    • pp.463-483
    • /
    • 2013
  • Considering the influences of fluid penetration, casing, excavation processes of wellbore and perforation tunnels, the seepage-deformation finite element model of oil and gas well coupled with perforating technique is established using the tensile strength failure criterion, in which the user-defined subroutine is developed to investigate the dynamic evolvement of the reservoir porosity and permeability. The results show that the increases of perforation angle and decreases of perforation density lead to a higher fracture initiation pressure, while the changes of the perforation diameter and length have no evident influences on the fracture initiation pressure. As for initiation location for the fracture in wellbore, it is on the wellbore face while considering the presence of the casing. By contrast, the fractures firstly initiate on the root of the tunnels without considering casing. Besides, the initial fracture position is also related with the perforation angle. The fracture initiation position is located in the point far away from the wellbore face, when the perforation angle is around $30^{\circ}$; however, when the perforation angle is increased to $45^{\circ}$, a plane fracture is initiated from the wellbore face in the maximum horizontal stress direction; no fractures was found around perforation tunnels, when the angel is close to $90^{\circ}$. The results have been successfully applied in an oilfield, with the error of only 1.1% comparing the fracture initiation pressure simulated with the one from on-site experiment.

Monitoring of Fill Dams for Internal Defect via Centrifuge Model Tests (원심모형시험을 이용한 필댐 취약부 모니터링)

  • Choo, Yun Wook;Cho, Sung Eun;Shin, Dong Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2C
    • /
    • pp.37-47
    • /
    • 2012
  • In this study, three centrifuge tests were performed to evaluate the feasibility of three physical quantities for detecting internal defect of earth core fill dam: pore water pressure, temperature, and electrical resistance. For this purpose, the measurement system for pore water pressure, temperature and electrical resistance on centrifuge model dams was established. Three centrifuge tests included a fill dam without internal defect and two other dams with artificial internal defect in the core. The effectiveness of seepage monitoring was examined during the centrifuge test. Test results showed the applicability of monitoring techniques to detect internal defect by monitoring pore water pressure, temperature, and electrical resistance.