• Title/Summary/Keyword: Seeds germination

Search Result 1,221, Processing Time 0.025 seconds

Effect of Water Table Depth in Different Soil Texture on Quality of Barley and Wheat Grain (토성별 지하수위가 밀, 보리의 품질에 미치는 영향)

  • 이홍석;구자환
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.3
    • /
    • pp.278-284
    • /
    • 1995
  • This experiment was performed to characterize the optimum water table level for the grain quality, seed germination and diastic power of barley(var. Olbori) and wheat(var. Grumil). Olbori and Grumil grew in the 550 liter plastic pot that filled with silt loam or sandy loam. During the whole growth period, the underground water level adjusted to be 20, 30, 40, 50 and 70cm. Filled grain ratio and specific gravity were not affected by soil texture and water table. Low level of water table caused the increase of 1,000 grain weight in wheat and barley, but soil texture didn't. Crude protein content tended to be high as the water table level was high, especially in wheat. Change in crude protein content was affected by underground water level more than soil texture. And the affection was slightly higher in sandy loam than silt loam, but the difference was small. The higher level of water table led to the lower crude lipid content in barley and wheat grain. Crude lipid content of both wheat and barley grain grown in sandy loam was higher than those grown in silt loam. As the water table level down, the ash content of barley and wheat grain tend to increase, especially in sandy loam. Wheat flour yield was not affected by soil texture. It was about 65% at 20cm of water level and above 67% at 40cm water level. The seed germination of wheat and barley was more than 95% when the seeds were placed at 2$0^{\circ}C$ for three days. Regardless of soil texture, the lowest germination was seen at 20cm of water table level. And the seed germination rate increased as the underground water level became low. Above 89% of barley grains were germinated within 48 hours except 20cm level of water table in sandy loam. Diastic power of germinated barley was the lowest at 20cm of water table level, and it was almost unchanged below 30cm of water table level. And also it was not affected by soil texture.

  • PDF

Study on the Development of Measuring System for Fermentation Degree of Liquid Swine Manure Using Visible Ray (가시광선을 이용한 돈분뇨 액비 부숙도 측정장치 개발에 관한 연구)

  • Choi, D.Y.;Kwag, J.H.;Park, K.H.;Song, J.I.;Kim, J.H.;Kang, H.S.;Han, C.B.;Choi, S.W.;Lee, C.S.
    • Journal of Animal Environmental Science
    • /
    • v.16 no.3
    • /
    • pp.227-236
    • /
    • 2010
  • This study was conducted to develop an measuring system and method for fermentation degree of liquid swine manure by visible ray. The constituent changes of liquid swine manure were examined. pH gradually increased with time, but EC gradually decreased. Malodor strength decreased gradually with aeration treatment with time. Control needed more time to decrease malodor strength than aeration treatment. In aeration treatment, there was no germination of seeds (radish, chinese cabbage) up to 6 weeks and germination rate at 15th week was over 50%. However, in control, there was no germination up to end of experiment. Circular chromatography method showed that there was change after 10th week in aeration treatment but there was no change up to end of experiment in control. As a result, the fermentation degree of liquid swine manure would have relations among pH, EC, germination rate, malodor concentration, and reaction of circular chromatography. The simple analytical instrument for liquid swine manure consisted of a tungsten halogen and deuterium lamp for light source, a sample holder, a quartz cell, spectrometer for spectrum analyzer, a malodour measuring device, a software, etc. Results showed that the simple analytical instrument that was developed can approximately predict the fermentation degree of liquid swine manure by visible ray. Generally, the experiment proved that the simple analytical instrument was reliable, feasible and practical for analyzing the fermentation degree of liquid swine manure.

Effects of Aeration Temperature and Period after BA Treatment on Growth and Lateral Root Formation of Soybean Sprouts (BA 처리 직후의 Aeration 온도와 기간이 콩나물의 생장과 세근발생에 미치는 영향)

  • 강진호;전병삼;조용준;박철종;윤수영;전승호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.3
    • /
    • pp.216-221
    • /
    • 2004
  • Treatment effect of benzyladenopurine (BA) used to block the lateral roots formed on soybean sprouts should be influenced by its applying methods. This study was done to check the effects of temperature and period from seed imbibition into 2 ppm BA solution to the first watering for sprout culture on growth and morphology of soybean sprouts. Imbibed three cultivar (cv. Pungsannamulkong, Sowonkong and Junjery) seeds for 5 houys into 2 ppm BA solution were placed under different temperatures (AT; 20, 30, $40^{\circ}$) and periods (AP; 0, 1, 2, 3, 4 hours). On the 6th day, the soybean sprouts were classified by 4 categories on the base of hypocotyl length; >7cm, 4 to 7cm), < 4cm and non-germination to calculate their composition rates, number of lateral roots, lengths of hypocotyl and root diameters at middle and hook of hypocotyl, and fraction dry weights were measured. Germination and growth responses of the cultivars were changed by AT and AP treatments. The responses, lateral root formation and fresh weights were, however, mainly affected by the cultivars used rather than Af treatment. Rate of the sprouts which formed lateral roots was decreased with increased periods to 4 hours, but their number per sprout was not different between the treatments of longer than 3 hours. Lengths of hypocotyl and root organ and total fresh weights were the highest in an hour AP treatment although longer than 3 hour AP treatments did not showed the significant difference in the lengths. Conclusionally AP treatment was more important than Af one in seed aeration for soybean sprout culture immediately after imbibition into BA solution, and was done at least for 3 hours.

Influence of Temperature, Wetness Duration and Fungicides on Fungal Growth and Disease Progress of Soybean Anthracnose Caused by Colletotrichum spp. (콩 탄저병균의 생장 및 병 진전에 미치는 온도, 수분 존재시간, 살균제의 영향)

  • Oh, Jeung-Haing;Kim, Gyu-Hong
    • Research in Plant Disease
    • /
    • v.9 no.3
    • /
    • pp.131-136
    • /
    • 2003
  • The effects of temperature, duration of wetness period, and fungicides on the spore germination, appressorium formation, acervulus formation and lesion development by Colletotrichum spp., cause of soybean anthracnose, and their pathogenicity were assessed in controlled environment. C. gloeosporioides was highly pathogenic on inoculated soybean seeds as high as C. truncatum, whereas remarkably low on the soybean leaves. Spore germination, appressorium formation and mycelial growth of C. gloeosporioides were best at $25^{\circ}C$, but C. truncatum was best at $30^{\circ}C$. It has also done at $15^{\circ}C$, even though it was much retarded. C. truncatum showed high sensitivity to the fungicides, fluazinam and benomyl, meanshile C. gloeosporioides showed to fluazinam and triflumizole. At least 8 hrs. of wetness period was requird for the pathogen to develop lesions at $30^{\circ}C$. When the wetness period was 32 hrs. lesion size of was larger at $25^{\circ}C$ than $30^{\circ}C$, however it was traceable at $20^{\circ}C$. Different sensitivity of Colletotrichum spp. to fungicides suggests that proper fungicide is required to effective control of soybean anthracnose ingected multiply with Colletotrichum spp.

Effect of Light Quality During Imbibition and Culture on Growth of Soybean Sprout (광질에 따른 콩나물의 생장)

  • 강진호;박아정;전병삼;윤수영;이상우
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.6
    • /
    • pp.427-431
    • /
    • 2002
  • Lateral roots of soybean sprout might reduce the quality. The study was done to measure the effect of light quality treated during 24 hour imbibition or 6 day culture on growth and development of soybean sprouts on the 6th day after culture. With the soybean seeds imbibed in 4 ppm benzyladenopurine (BA) solution for last 6 hours of the imbibition, blue and red lights were treated during the imbibition, but during 6 day culture, blue and red or far-red light treatments were done for 50 minutes or 5 hours a day, respectively, the periods taking for their cotyledons to turn green color, On the 6th day after culture, the soybean sprouts were classified by 4 categories on the base of hypocotyl length;>7cm, 4 to 7cm, <4cm and non-germination, and their lateral roots, hypocotyl diameters and fraction dry weights were measured. Blue and red lights treated during the imbibition completely blocked lateral root formation regardless of the lights treated during the culture, and showed nearly the same rate of hypocotyls of longer than 4cm. The period of each light treatment forced during the culture did not influence the growth of soybean sprouts. far-red light treated for 5 hours everyday, however, had the least rate of seed germination and hypocotyls of longer than 7cm of the light quality treatments. In addition, red and far-red lights almost equally having the commercial soybean sprouts of longer than 4cm hypocotyls move elongated and selenderized than blue light and dark treatment, meaning the growth and morphology of soybean sprouts was affected by light treatments during the culture.

Studies on a Technique of the Generation shortening for a Breeding Efficiency promotion of Rape-oil Improvement -III. Effects of Ethrel (2-chloroethyl phosphonic acid) on Maturity shortening and Germination power in Brassica napus L.- (유채 성분육종 효율을 증진키 위한 세대단축 기술개발에 관한 연구 -제 III 보. ETHREL 처리가 유채 등숙기간 단축과 발아능력에 미치는 영향-)

  • Jung-Il Lee;Eung-Ryong Son;Gi-Pyeong Choo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.20
    • /
    • pp.107-114
    • /
    • 1975
  • To develop the technics of generation shortening for the breeding of rape oil composition. effect of the ethrel and hydroperoxide treatment for the increasing of germination ability during maturing period was investigated. It was the most effect ire for a generation shortening that the seeds after, 10 days treated with $H_2O$$_2$-0.5% and 2, 000ppm of ethrel and after 15 days treated with $H_2O$$_2$-0.5% and 500ppm of ethrel on 15 day after flowering were germinated 76% and 90% respectively. It suggested that effect of ethrel and hydroperoxide was multiple and 4-5 generations could pass in a year because one generation needed only 66-71 days.

  • PDF

Evaluation of Bio-Control Efficacy of Trichoderma Strains against Alternaria alternata Causing Leaf Blight of Ashwagandha [Withania somnifera (L.) Dunal]

  • Rahman, Md. Ahsanur;Rahman, Md. Arifur;Moni, Zakiah Rahman;Rahman, Mohammad Anisur
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.3
    • /
    • pp.207-218
    • /
    • 2020
  • Ashwagandha is an important ancient medicinal crops, being affected with many diseases, among which leaf blight caused by Alternaria alternata has become the constraint resulting in huge yield losses. Continuous usage of chemical methods leads to environment, soil and water pollution. Whereas biological control of diseases is long lasting, inexpensive, eco-friendly and harmless to target organisms. In this context, it is aimed to evaluate five Trichoderma strains viz. Trichoderma virens IMI-392430, T. pseudokoningii IMI-392431, T. harzianum IMI-392432, T. harzianum IMI-392433 and T. harzianum IMI-392434 as bio-control efficacy against A. alternata and growth promoting effect in Ashwagandha. All the Trichoderma strains had varied antagonistic effects against the pathogen. In dual culture technique, the strain T. harzianum IMI-392433 showed maximum percentage inhibition of mycelial growth (54.89%) followed by T. harzianum IMI-392432 (53.83%), T. harzianum IMI-392434 (48.94%) and T. virens IMI-392430, (43.62%) against the pathogen, while the least inhibition percentage was observed with the T. pseudokoningii IMI-392431 (36.60%). The culture filtrate of the Trichoderma strain, T. harzianum IMI-392433 recorded highest inhibition on the mycelial growth (39.05%) and spore germination (80.77%) of pathogen and the lowest was recorded in T. pseudokoningii IMI-392431 (20.45 and 50%). Moreover, seeds treated with spore suspension of the strain T. harzianum IMI-392433 reduced the percentages of disease severity index significantly. The strain T. harzianum IMI-392433 also significantly increased seed germination %, seedling vigor and growth of Ashwagandha. The correlation matrix showed that root yield per plant of Ashwagandha had significant and positive correlation with plant height (r=0.726⁎⁎), number of leaf (r=0.514⁎⁎), number of primary branch (r=0.820⁎⁎), number of secondary branch (r=0.829⁎⁎), fresh plant weight (r=0.887⁎⁎), plant dry weight (r=0.613⁎⁎), root length (r=0.824⁎⁎), root diameter (r=0.786⁎⁎), root dry weight (r=0.739⁎⁎) and fresh root weight (r=0.731⁎⁎). The significant and negative correlation (r=-0.336⁎⁎) was observed with the root yield and percentages of disease severity index. The study recognized that the T. harzianum IMI-392433 strain performed well in inhibiting the mycelial growth and reduced the percentages of disease severity index of pathogen as well as increased the plant growth in Ashwagandha.

Studies on the fungicidal action and its physico-chemical properties of phenylmercuric 8-oxyquinolinate (Phenylmercuric 8-oxyquinolinate의 살균작용 및 이의 이화학적 성질에 관한 연구)

  • Sohn C. Y.;Kang I. M.;Lee S. H.
    • Korean journal of applied entomology
    • /
    • v.4
    • /
    • pp.11-18
    • /
    • 1965
  • In order to investigate the fungicidal activities against various plant pathogenes, diminishing effect of plant transpiration, phytotoxicities, vapor effect and the rate of reduction by ultraviolet rays of phenylmercuric 8-oxyquinolinate(P.M.Q), this experiments were undertaken under various laboratory conditions. 1. Inhibitory activity on the spore germination of this chemical was shown less effective than that of P.M.A..(Table 2, Table 3, Table 4, Table 5 and Table 6) Also, P.M.Q. was resulted a somewhat higher inhibitory activity on the hyphae growth than P.M.A. (Table 7). 2. In the diminishing effect of plant transpiration, 8-hydroxyquinoline sulfate(oxine sulfate) was more strong inhibitory at first than P.M.Q., while, at last, P.M.Q. was more strong inhibitory in comparison with oxine sulfate(Table 8, Fig. 1 and Table 9). 3. P.M.Q. was shown less injury on the germination of rice plant seeds and the emergence of their roots than P.M. A.(Table 10). Injuries was not observed on the rice seedlings and soy-bean seedlings sprayed with 40 ppm of this chemical. 4. P.M.A. had more inhibitory effects on the mycelial growth of phytopathogenes than P.M.Q. on the vapor effect (Table 11, Fig. 2). 5. Biological activity and chemical decomposition rate of P.M.A. were greatly reduced by exposure of this compound to ultraviolet rays. But, P.M.Q. was only slightly affected by similar treatment(Table 12, Fig. 3, Table 13 and Fig. 4). From the above results, this chemical will be a promising fungicide adding fungitoxicities against various phytopatho genes, diminishing effect of plant transpiration and physico-stability.

  • PDF

Control of Red Pepper Anthracnose Using Bacillus subtilis YGB36, a Plant Growth Promoting Rhizobacterium (식물생장촉진근권세균 Bacillus subtilis YGB36을 이용한 고추 탄저병의 생물학적 방제)

  • Lee, Yong Yoon;Lee, Younmi;Kim, Young Soo;Kim, Hyun Sup;Jeon, Yongho
    • Research in Plant Disease
    • /
    • v.26 no.1
    • /
    • pp.8-18
    • /
    • 2020
  • Red pepper, one of the major economic crops in Korea, is being affected by anthracnose disease caused by Colletotrichum acutatum. To control this disease, an antagonistic bacterial strain, Bacillus subtilis YGB36 identified by 16S rDNA sequencing, physiological and biochemical analyses is used as a biological control agent. In vitro screening revealed that the strain YGB36 possess strong antifungal activity against the pathogen Cylindrocarpon destructans. The strain exhibited cellulase, protease, amylase, siderophore production and phosphate solubility. In vitro conidial germination of C. acutatum was most drastically inhibited by YGB36 cell suspensions (106 cfu/ml) or culture filtrate. Development of anthracnose symptoms was reduced on detached immature green pepper fruits by treatment with cell suspensions, and its control value was recorded as 65.7%. The YGB36 bacterial suspension treatment enhanced the germination rate of red pepper seeds and promoted root development and growth under greenhouse conditions. The in vitro screening of fungicide and insecticide sensitivity test against YGB36 revealed that the bacterial growth was not affected by any of the insecticides, and 11 fungicides out of 21 used. Collectively, our results clearly suggest that the strain YGB36 is considered as one of the potential biocontrol agents against anthracnose disease in red pepper.

Establish of Optimum Cultivation Temperature for the Production of Peanut Sprouts (고품질 땅콩나물 생산을 위한 최적 재배수온 조건 확립)

  • Lee, Gyu-Bin;Park, Eun-Ji;Heo, You;Son, Beung-Gu;Choi, Young-Whan;Lee, Yong-Jae;Park, Young-Hoon;Suh, Jeong-Min;Kang, Jum-Soon
    • Journal of Environmental Science International
    • /
    • v.24 no.6
    • /
    • pp.763-767
    • /
    • 2015
  • The present study was conducted to development mass production methods for peanut sprouts that is considered as a field of blue ocean among the agricultural products. 'Jopyeong' was the best as a major cultivar for peanut sprouts production. The manual for the production of high-quality peanut sprouts is as following. Germination temperature appropriate for production of high-quality peanut sprouts was $27^{\circ}C$. Peanut sprouts at the growth stage of 8th day, and older plants with advanced growth showed deteriorated merchantable and eating quality. Resveratrol compound was not found in the seeds, but its highest amount was detected from 9-day old sprouts. The best water temperature applicable to high quality peanut sprout production was $25^{\circ}C$. The growth of peanut sprout was inhibited by the high temperatures above $35^{\circ}C$ and low temperatures below $15^{\circ}C$.