• Title/Summary/Keyword: Seed marker

Search Result 143, Processing Time 0.026 seconds

Genetic Diversity of Korean Barley (Hordeum vulgare L.) Varieties Using Microsatellite Markers (Microsatellite 마커를 이용한 한국 보리 품종의 유전적 다양성)

  • Kwon, Yong-Sham;Hong, Jee-Hwa;Choi, Keun-Jin
    • Korean Journal of Breeding Science
    • /
    • v.43 no.4
    • /
    • pp.322-329
    • /
    • 2011
  • Microsatellite markers were utilized to investigate genetic diversity among 70 Korean barley varieties (Hordeum vulgare). Ninety nine microsatellite primer pairs were screened for 9 varieties. Twenty primer pairs showed highly polymorphic. The relationship between markers genotypes and 70 varieties was analyzed. A total of 124 polymorphic amplified fragments were obtained by using 20 microsatellite markers. Two to nine SSR alleles were detected for each locus with an average of 6.2 alleles per locus. Average polymorphism information content (PIC) was 0.734, ranging from 0.498 to 0.882. A total of 124 marker loci were used to calculate Jaccard's distance coefficients for cluster analysis using UPGMA. Clustering group was divided 2 groups corresponding to 2-rowed and 6-rowed barley varieties. The phenogram was discriminated all varieties by markers genotypes. These markers may be used wide range of practical application in variety identification and genetic purity assessment of barley.

Development of RAPD-SCAR Molecular Marker Related to Seed-hair Characteristic in Carrot (당근(Daucus carota var. sativa) 종자모 형질 관련 RAPD-SCAR 분자표지 개발)

  • Shim, Eun-Jo;Park, Sung-Kwan;Oh, Gyu-Dong;Jun, Sang-Jin;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.31 no.6
    • /
    • pp.756-763
    • /
    • 2013
  • Mechanical hair removal of carrot seed causes seed injuries and suppresses the germination in carrot cultivation. This study was performed to develop molecular markers for breeding high quality cultivars with short-hair seed. To meet this objective, random amplified polymorphic DNA (RAPD)-sequence characterized amplified region (SCAR) markers specifically linked to seed-hair characteristic were identified using CT-SMR 616 OP 389-1 line with short-haired seed and CT-SMR 616 OP 616-33 line with long-haired seed, bred by self-pollination for 6 years from 2008 to 2013, as parents. After seed hair lengths of these lines were analyzed using microscope, next generations were advanced and compared with the molecular markers polymorphism. From RAPD analysis using fixed lines in 2011, twelve RAPD primers showing polymorphic bands specific between the two lines were identified from 80 random primers. To develop RAPD-SACR marker, SCAR primers were designed based on sequence analysis of these specific RAPD bands and more than three combinations of primers were tested. As a result, it was found that the $SCA2_{1.2}$ amplified single polymorphic band from short-haired seed line. To confirm this result, $SCA2_{1.2}$ marker was retested by applying to the 2012 and 2013 progenies. Finally, it was concluded that the developed $SCA2_{1.2}$ marker distinguished short-haired line from long-haired seed line. Therefore, SCAR marker, $SCA2_{1.2}$ is expected to be utilized for breeding of the short-haired seed cultivars.

Identification of Different Species and Dultivars of Brassica by SDS-PAGE, Isozyme and Molecular Marker

  • Mukhlesur Rahman Md.;Hirata Yutaka
    • Journal of Plant Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.27-35
    • /
    • 2005
  • Eighty-five different cultivars of Brassica rapa, B. juncea, B. nap us, B. carinata, B. oleracea and hexaploid Brassica collected from Bangladesh, Japan, China and Denmark were analyzed by SDS-PAGE for seed and leaf protein variations, using esterase, acid phosphatase and peroxidase isozyme analysis. Ten polymorphic bands were identified from seed protein however no identifiable polymorphic band was found in the leaf protein. Polymorphic markers clearly distinguished the different Brassica species as well as yellow sarson (YS) and brown seeded (BS) cultivars of B. rapa. The $F_1$ cross between YS and brown seeded cultivars showed the existance of all poly-morphic bands of the respective parents. The Bangla-deshi and Japanese cultivars of B. rapa differed in the amount of seed protein. In the case of isozyme analysis, esterase showed the highest number of polymorphic bands (13) followed by acid phosphatase (9) and peroxidase (5). These polymorphic markers were very effec-tive for classification of all the species studied in this experiment. In parentage tests using isozymes, the hybridity of intra-and-interspecific crosses of almost all the seedlings could be identified from their respective cross combinations. Esterase polymorphism showed a clear differentiation between YS and BS types of B. rapa. In addition, two esterase polymorphic markers were iden ified to differentiate some cultivars of B. juncea. Segregation patterns in these two esterase bands showed a simple Mendelian monohybrid ratio of 3:1 in $F_2$, 1:1 in test cross and 1:0 in back cross progenies. No polymorphic band was identified to distinguish different cultivars of the same species by acid phosphatase or peroxidase. Polymerase Chain Reaction (PCR) was carried out with seed coat color specific marker of B. juncea. The yellow seeded cultivars produced a strong band at 0.5 kb and weak band 1.2 kb. In the addition of these two specific bands, Japanese yellow-seeded cultivars expressed two more weak bands at 1.0 kb and 1.1 kb. Where the brown seeded cultivars generated a single strong band at 1.1 kb. In segregating population, the yellow seed coat color marker segregated at a ratio 15 (brown) : 1 (yellow), indicating the digenic inheritance pattern of the trait.

Development of an Automatic Seed Marker Registration Algorithm Using CT and kV X-ray Images (CT 영상 및 kV X선 영상을 이용한 자동 표지 맞춤 알고리듬 개발)

  • Cheong, Kwang-Ho;Cho, Byung-Chul;Kang, Sei-Kwon;Kim, Kyoung-Joo;Bae, Hoon-Sik;Suh, Tae-Suk
    • Radiation Oncology Journal
    • /
    • v.25 no.1
    • /
    • pp.54-61
    • /
    • 2007
  • [ $\underline{Purpose}$ ]: The purpose of this study is to develop a practical method for determining accurate marker positions for prostate cancer radiotherapy using CT images and kV x-ray images obtained from the use of the on- board imager (OBI). $\underline{Materials\;and\;Methods}$: Three gold seed markers were implanted into the reference position inside a prostate gland by a urologist. Multiple digital image processing techniques were used to determine seed marker position and the center-of-mass (COM) technique was employed to determine a representative reference seed marker position. A setup discrepancy can be estimated by comparing a computed $COM_{OBI}$ with the reference $COM_{CT}$. A proposed algorithm was applied to a seed phantom and to four prostate cancer patients with seed implants treated in our clinic. $\underline{Results}$: In the phantom study, the calculated $COM_{CT}$ and $COM_{OBI}$ agreed with $COM_{actual}$ within a millimeter. The algorithm also could localize each seed marker correctly and calculated $COM_{CT}$ and $COM_{OBI}$ for all CT and kV x-ray image sets, respectively. Discrepancies of setup errors between 2D-2D matching results using the OBI application and results using the proposed algorithm were less than one millimeter for each axis. The setup error of each patient was in the range of $0.1{\pm}2.7{\sim}1.8{\pm}6.6\;mm$ in the AP direction, $0.8{\pm}1.6{\sim}2.0{\pm}2.7\;mm$ in the SI direction and $-0.9{\pm}1.5{\sim}2.8{\pm}3.0\;mm$ in the lateral direction, even though the setup error was quite patient dependent. $\underline{Conclusion}$: As it took less than 10 seconds to evaluate a setup discrepancy, it can be helpful to reduce the setup correction time while minimizing subjective factors that may be user dependent. However, the on-line correction process should be integrated into the treatment machine control system for a more reliable procedure.

Application of the Molecular Marker in Linkage Disequilibrium with Ms, a Restorer-of-fertility Locus, for Improvement of Onion Breeding Efficiency

  • Kim, Sujeong;Kim, Sunggil
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.550-558
    • /
    • 2015
  • To analyze the linkage relationships among molecular markers recently reported to be linked to onion (Allium cepa L.) Ms, a restorer-of-fertility locus, in onion (Allium cepa L.), three single nucleotide polymorphism markers were converted into cleaved amplified polymorphic sequence (CAPS) markers based on onion transcriptome sequences and the rice genome database. Analysis of the recombinants selected from 4,273 segregating plants using CAPS and other linked markers demonstrated the jnurf13 and jnurf610 markers to perfectly co-segregate with the Ms locus. In contrast to jnurf13, the jnurf610 marker was not in perfect linkage disequilibrium with the Ms locus in diverse breeding lines. Thus, the jnurf13 marker and the marker for identification of cytoplasm types were utilized to enhance the efficiency of onion breeding through four applications. First, 89 maintainer lines containing the normal cytoplasm and homozygous recessive Ms genotypes were successfully identified from 100 breeding lines. Second, these two molecular markers were used to analyze the main sources of male-fertile contaminants frequently found in the male-sterile parental lines during F1 hybrid seed production. The majority of the contaminants contained heterozygous Ms genotypes, indicating that pollen grains harboring the dominant Ms genotype may have been introduced during propagation of the maintainer lines. Therefore, the genetic purity of the two maintainer lines was analyzed in the third application, and the results showed that both maintainer lines contained 13-21% off-types. Finally, the two markers were used to increase the seed yield potentials of two open-pollinated varieties containing sterile cytoplasms by removing the plants harboring homozygous recessive and heterozygous Ms genotypes.

Consistency of QTLs for Soybean Seed Size across Generations (대두 종자크기에 대한 QTL의 consistency)

  • ;James E. Specht
    • Journal of Life Science
    • /
    • v.7 no.4
    • /
    • pp.358-360
    • /
    • 1997
  • Soybean [Glycine max (L.) Merr.] seed size is a important yield component and is a primary consideration in the development of cultivars for specialty markets. Our objective was to examine the consistency of QTLs for seed size across generations. A 68-plant F$_{2} segregation population derived from a mating between Marcury (small seed) and PI 467.468 (large seed) was evaluated with RAPD markers. In the F$_{2} plant generation (i.e. F$_{3} seed), three markers, OPL09a, OPM)7a, and OPAC12 were significantly (P<0.01) associated with seed size QTLs. In the F$_{2} ; F$_{3} generation (i.e., F$_{4} seed), four markers, OPA092, OPG19, OPL09b, and OPP11 were significantly (P<0.01) associated with seed size QTLs. Just two markers, OPL09a, and OPL09b were significantly (P<0.05) associated with seed size QTLs in both generations. The consistency of QTLs across generations indicates that marker-assisted selection for seed size is possible in a soybean breeding program.

  • PDF

Simple sequence repeat marker development from Codonopsis lanceolata and genetic relation analysis

  • Kim, Serim;Jeong, Ji Hee;Chung, Hee;Kim, Ji Hyeon;Gil, Jinsu;Yoo, Jemin;Um, Yurry;Kim, Ok Tae;Kim, Tae Dong;Kim, Yong-Yul;Lee, Dong Hoon;Kim, Ho Bang;Lee, Yi
    • Journal of Plant Biotechnology
    • /
    • v.43 no.2
    • /
    • pp.181-188
    • /
    • 2016
  • In this study, we developed 15 novel polymorphic simple sequence repeat (SSR) markers by SSR-enriched genomic library construction from Codonopsis lanceolata. We obtained a total of 226 non-redundant contig sequences from the assembly process and designed primer sets. These markers were applied to 53 accessions representing the cultivated C. lanceolata in South Korea. Fifteen markers were sufficiently polymorphic, and were used to analyze the genetic relationships between the cultivated C. lanceolata. One hundred three alleles of the 15 SSR markers ranged from 3 to 19 alleles at each locus, with an average of 6.87. By cluster analysis, we detected clear genetic differences in most of the accessions, with genetic distance varying from 0.73 to 0.93. Phylogenic analysis indicated that the accessions that were collected from the same area were distributed evenly in the phylogenetic tree. These results indicate that there is no correlative genetic relationship between geographic areas. These markers will be useful in differentiating C. lanceolata genetic resources and in selecting suitable lines for a systemic breeding program.

Utility of Isozyme as a Genetic Marker for Estimating the Effects of Release and Stock Enhancement of Fleshy Prawn Fenneropenaeus chinensis

  • Han Hyon-Sob;Jang In-Kwon;Jun Je-Cheon;Kim Jong-Hwa;Park Young-Je
    • Fisheries and Aquatic Sciences
    • /
    • v.9 no.2
    • /
    • pp.75-82
    • /
    • 2006
  • We evaluated the utility of applying isozyme analysis and two tagging methods, visible implant fluorescent elastomer (VIE) injection and uropod-cutting, to monitor the effects of releasing nursery-reared fleshy prawn (Fenneropenaeus chinensis) into natural habitat in Korea. One hundred thousand farmed prawns (70 mm long) were tagged by clipping off the outer left uropod and injecting them with VIE. This marked seed population was released at Muchangpo, Korea, on 11 and 19 July 2002. Two months later, total catch and catch per unit effort (CPUE) at three locations (Hongwon, Muchangpo, and Anmyundo) were determined. Total catch and CPUE increased nearly 18% over the previous year in Hongwon and Muchangpo. The mixing rate, estimated by uropod regeneration pattern, was 0.33% at Hongwon, 0.53% at Muchangpo, and 0.21% at Anmyundo. The recapture rate was about 3.5%. Isozyme analysis confirmed that the mixing rate was highest at Muchangpo. Moreover, fleshy prawns from Muchangpo were genetically most related to the seed population, indicating that the released prawns had largely remained near the released site. We also confirmed that isozyme genes are valuable as genetic markers for qualitative analyses of a released seed population.

Development of Molecular Markers to Detect Diaporthe spp. from Decayed Soybean Seeds

  • Seongho Ahn;Nguyen Thi Diem Thuy
    • Mycobiology
    • /
    • v.51 no.6
    • /
    • pp.463-467
    • /
    • 2023
  • Soybean is one of the world's most widely cultivated food crops, and soybean seeds are supplied from national seed resources in Korea. However, the transmission of seed-borne diseases through infected soybean seeds is problematic. Among these diseases, soybean seed decay is caused by Diaporthe spp. Infecting the pods, and the infected seeds show rotting symptoms. Most diseased seeds are removed during the selection process; however, it is difficult to distinguish infected seeds that do not display symptoms. Hence, a sequencebased method was devised to screen Diaporthe-infected seeds. Based on the nuclear ribosomal internal transcribe spacer (ITS) region of the pathogen, a primer was designed to distinguish the infection from other soybean seed pathogens. As a result of the comparison between healthy and Diaporthe-diseased seeds by using the primers, Diaporthe was detected only in the diseased seeds. Therefore, it is possible to distribute healthy soybean seeds by detecting Diaporthe-diseased seeds at the genetic level using the Diaporthe-specific primers.

Detection of Individuals Restoring Fertility by DNA Fragment Converted into STS (sequence tagged site) in Red pepper

  • Lee, Jang-Soo;Lee, Keun-Hyang;Kim, Yeo-Song;Kang, Kwon-Kyoo;Nou, Ill-Sup;Hirata, Yutaka
    • Plant Resources
    • /
    • v.7 no.2
    • /
    • pp.136-140
    • /
    • 2004
  • Co-segregation of male fertility with DNA markers selected by RAPD analysis as being potentially linked to the restorer gene (Rf) for Cytoplasmic male sterility (CMS) was analyzed using segregating F2 population. One RAPD marker directly linked to the Rf locus was identified. Amplification of OPT-02/570 using the STS primers generated a monomorphic band of each fertile plants randomly selected F2 progenies. From these results, this specific marker would be strongly linked to be restoring gene. The use of STS marker is effective in overcoming the reliability of the RAPD phenotype and improving their utility for MAS, co-dominant STS markers are especially very useful.

  • PDF