Development of an Automatic Seed Marker Registration Algorithm Using CT and kV X-ray Images

CT 영상 및 kV X선 영상을 이용한 자동 표지 맞춤 알고리듬 개발

  • Cheong, Kwang-Ho (Department of Radiation Oncology, Hallym University College of Medicine) ;
  • Cho, Byung-Chul (Department of Radiation Oncology, Hallym University College of Medicine) ;
  • Kang, Sei-Kwon (Department of Radiation Oncology, Hallym University College of Medicine) ;
  • Kim, Kyoung-Joo (Department of Radiation Oncology, Hallym University College of Medicine) ;
  • Bae, Hoon-Sik (Department of Radiation Oncology, Hallym University College of Medicine) ;
  • Suh, Tae-Suk (Department of Biomedical Engineering, College of Medicine, The Catholic University of Korea)
  • 정광호 (한림대학교 의과대학 방사선종양학교실) ;
  • 조병철 (한림대학교 의과대학 방사선종양학교실) ;
  • 강세권 (한림대학교 의과대학 방사선종양학교실) ;
  • 김경주 (한림대학교 의과대학 방사선종양학교실) ;
  • 배훈식 (한림대학교 의과대학 방사선종양학교실) ;
  • 서태석 (가톨릭대학교 의과대학 의공학교실)
  • Published : 2007.03.31

Abstract

[ $\underline{Purpose}$ ]: The purpose of this study is to develop a practical method for determining accurate marker positions for prostate cancer radiotherapy using CT images and kV x-ray images obtained from the use of the on- board imager (OBI). $\underline{Materials\;and\;Methods}$: Three gold seed markers were implanted into the reference position inside a prostate gland by a urologist. Multiple digital image processing techniques were used to determine seed marker position and the center-of-mass (COM) technique was employed to determine a representative reference seed marker position. A setup discrepancy can be estimated by comparing a computed $COM_{OBI}$ with the reference $COM_{CT}$. A proposed algorithm was applied to a seed phantom and to four prostate cancer patients with seed implants treated in our clinic. $\underline{Results}$: In the phantom study, the calculated $COM_{CT}$ and $COM_{OBI}$ agreed with $COM_{actual}$ within a millimeter. The algorithm also could localize each seed marker correctly and calculated $COM_{CT}$ and $COM_{OBI}$ for all CT and kV x-ray image sets, respectively. Discrepancies of setup errors between 2D-2D matching results using the OBI application and results using the proposed algorithm were less than one millimeter for each axis. The setup error of each patient was in the range of $0.1{\pm}2.7{\sim}1.8{\pm}6.6\;mm$ in the AP direction, $0.8{\pm}1.6{\sim}2.0{\pm}2.7\;mm$ in the SI direction and $-0.9{\pm}1.5{\sim}2.8{\pm}3.0\;mm$ in the lateral direction, even though the setup error was quite patient dependent. $\underline{Conclusion}$: As it took less than 10 seconds to evaluate a setup discrepancy, it can be helpful to reduce the setup correction time while minimizing subjective factors that may be user dependent. However, the on-line correction process should be integrated into the treatment machine control system for a more reliable procedure.

목 적: 본 연구의 목적은 전립선암 환자의 방사선 치료 시 표적의 정확한 위치를 찾기 위해 표지(marker)를 삽입한 경우 방사선치료계획 시 촬영한 CT 영상과 매 치료 시 온보드 영상장치(on-board imager, OBI)로부터 획득된 직교 kV X선 영상을 이용하여 표지의 위치를 계산하고 자동으로 맞춤을 수행하여 환자 셋업 오차를 보정하도록 하는 방법을 개발하는 것이다. 대상 및 방법: 세 개의 금 표지를 환자 전립선의 기준 위치에 삽입한 후 CT 모의치료기를 이용하여 2 mm 슬라이스 간격으로 CT 영상을 획득하였으며 매 치료 전에 환자 셋업 보정을 위하여 OBI를 이용하여 직교하는 kV X선 환자 영상을 획득하였다. CT 및 kV X선 영상 내 표지 정보 및 좌표 값 추출을 위하여 화소값의 문턱값 처리, 필터링, 외곽선 추출, 패턴 인식 등 다수의 영상처리 알고리듬을 적용하였다. 각 표지들 위치의 대표값으로 삼각형의 무게중심 개념을 이용하였으며 기준 CT 영상 및 직교 kV X선 영상으로부터 각각 무게중심의 좌표를 구한 후 그 차이를 보정해야 할 셋업의 오차로 계산하였다. 알고리듬의 건전성(robustness) 평가를 위해 팬텀을 이용하여 계산된 CT 및 kV X선 영상의 무게중심이 실제 지정된 위치와 일치하는지 여부를 확인하였으며, 본원에서 방사선 치료를 시행한 네 명의 전립선암 환자에 대상으로 치료 직전 촬영한 38 내지 39쌍의 kV X선 영상에 대하여 알고리듬을 적용한 후 OBI 프로그램에서 제공되는 2차원-2차원 맞춤 결과와 비교하였다. 결 과: 팬텀 실험 결과 실제 값과 CT 영상 및 직교 kV X선 영상으로부터 계산된 무게 중심 좌표 값이 1 mm 오차 내에서 일치함을 확인할 수 있었다. 환자 영상에 적용한 경우에도 모든 영상에 대하여 성공적으로 각 표지의 위치를 계산할 수 있었으며 2차원-2차원 맞춤 기능을 이용하여 계산된 셋업 오차와 비교해본 결과 1 mm 범위 내에서 일치함을 확인할 수 있었다. 본 알고리듬을 이용하여 계산한 결과 셋업 오차는 전후(AP) 방향으로 환자별로 작게는 $0.1{\pm}2.7\;mm$에서 크게는 $1.8{\pm}6.6\;mm$까지, 상하(SI) 방향으로 $0.8{\pm}1.6\;mm$에서 $2.0{\pm}2.7\;mm$, 좌우(Lat) 방향으로 $-0.9{\pm}1.5\;mm$에서 $2.8{\pm}3.0\;mm$까지였으며 환자에 따라 그 편차의 차이가 있었다. 결 론: 제안된 알고리듬을 이용하여 1회 셋업 오차를 평가하는 데 소요되는 시간은 10초 미만으로서 임상 적용 시 환자 셋업 시간을 줄이고 주관성을 배제하는 데 도움이 될 수 있을 것으로 기대된다. 그러나 온라인 환자 셋업 보정 시스템에 적용하기 위해서는 선형가속기의 제어 시스템에 통합되는 것이 필요하다.

Keywords

References

  1. Ministry of Health and Welfare. Cancer incidence in Korea 1999- 2001. Ministry of Health and Welfare. Seoul. 2005
  2. Roach M, Pickett B, Rosenthal SA, Verhey L, Phillips TL. Defining treatment margins for conformal irradiation of localized prostate cancer. Int J Radiat Oncol Biol Phys 1994; 28:267- 275 https://doi.org/10.1016/0360-3016(94)90167-8
  3. Van Herk M, Bruce A, Kroes G, Shouman T, Touw A, Lebesque JV. Quantification of organ motion during conformal radiotherapy of the prostate by three- dimensional image registration. Int J Radiat Oncol Biol Phys 1995;33:1311- 1320 https://doi.org/10.1016/0360-3016(95)00116-6
  4. Song WY, Schaly B, Bauman G, Battista JJ and Van Dyk J. Evaluation of image- guided radiation therapy (IGRT) technologies and their impact on the outcomes of hypofractionated prostate cancer treatments: a radiobiologic analysis. Int J Radiat Oncol Biol Phys 2006;64:289- 300 https://doi.org/10.1016/j.ijrobp.2005.08.037
  5. Wong JR, Grimm L, Uematsu M, et al. Image- guided radiotherapy for prostate cancer by CT- linear accelerator combination: prostate movements and dosimetric considerations. Int J Radiat Oncol Biol Phys 2005;61:561- 569 https://doi.org/10.1016/j.ijrobp.2004.06.010
  6. Balter JM, Sandler HM, Lam K, Bree RL, Lichter AS, Ten Haken RK. Measurement of prostate movement over the course of routine radiotherapy using implanted markers. Int J Radiat Oncol Biol Phys 1995;31:113- 118 https://doi.org/10.1016/0360-3016(94)00382-U
  7. Litzenberg D, Dawson LA, Sandler H, et al. Daily prostate targeting using implanted radiopaque markers. Int J Radiat Oncol Biol Phys 2002;51:699- 703
  8. Bijhold J, Lebesque JV, Hart AAM, Vijbrief RE. Maximizing setup accuracy using portal images as applied to conformal boost technique for prostatic cancer. Radiother Oncol 1992;24: 261- 271 https://doi.org/10.1016/0167-8140(92)90233-K
  9. Sandler HM, Bree RL, McLaughin PW, Grossman HB, Litcher AS. Localization of the prostate apex for radiation therapy using implanted markers. Int J Radiat Oncol Biol Phys 1993;27:915- 919 https://doi.org/10.1016/0360-3016(93)90468-B
  10. Crool JM, Raymond Y, Salhani D, Yang H, Esche B. Prostate motion during standard radiotherapy as assessed by fiducial markers. Radiother Oncol 1995;37:35- 42 https://doi.org/10.1016/0167-8140(95)01613-L
  11. Gall KP, Verhey LJ, Wagner M. Computer- assisted positioning of radiotherapy patients using implanted radiopaque fiducials. Med Phys 1993;20:1153- 1159 https://doi.org/10.1118/1.596969
  12. Vigneault E, Pouliot J, Laverdiere J, Roy J, Dorion M. Electronic portal imaging device detection of radioopaque markers for the evaluation of prostate position during megavoltage irradiation: a clinical study. Int J Radiat Oncol Biol Phys 1997;37:205- 212 https://doi.org/10.1016/S0360-3016(96)00341-0
  13. Pouliot J, Aubin M, Langen KM, et al. (Non)- migration of radiopaque markers used for on- line localization of the prostate with an electronic portal imaging device. Int J Radiat Oncol Biol Phys 2003;56:862- 866 https://doi.org/10.1016/S0360-3016(03)00267-0
  14. Ali EAH, Bel A, Vijbrief R, Bartelink H, Lebesque JV. Time trend of patient setup variations during pelvic irradiation using electronic portal imaging. Radiother Oncol 1992;26:162- 171 https://doi.org/10.1016/0167-8140(93)90098-S
  15. Zellers R, McLaughlin PW, Sandler HM, Roberson P, Ten Haken RK. Prostate position late in the course of external beam therapy relative to the initial pretreatment position: patterns and predictors. Int J Radiat Oncol Biol Phys 2000;47: 655- 660 https://doi.org/10.1016/S0360-3016(00)00469-7
  16. Balter JM, Lam KL, Sandler HM, Littles JF, Bree RL, Ten Haken RK. Automated localization of the prostate at the time of treatment using implanted radiopaque markers: technical feasibility. Int J Radiat Oncol Biol Phys 1995;33:1281- 1286 https://doi.org/10.1016/0360-3016(95)02083-7
  17. Nederveen A, Lagendijk J, Hofman P. Detection of fiducial gold markers for automatic on- line megavoltage position verification using a marker extraction kernel (MEK). Int J Radiat Oncol Biol Phys 2000;47:1435- 1442 https://doi.org/10.1016/S0360-3016(00)00523-X
  18. NMPE. Gold marker placement worksheet: Prostate. NMPE, 2003
  19. Gonzalez RC, Woods RE, Eddins SL. Digital image processing using MatLab. ITC. Seoul. 2004:398- 409
  20. Cheong KH, Suh TS, Cho BC, Kang SK, Kim KJ, Bae HS. Analysis of uncertainties due to digitally reconstructed radiographic (DRR) image quality in 2D- 2D matching between DRRs and kV X- ray images from the On- Board Imager (OBI). Korean J Med Phys 2006;17:67- 76
  21. Kaiser A, Schultheiss TE, Wong JYC, et al. Pitch, roll and yaw variations in patient positioning. Int J Rad Oncol Biol Phys. 2006;66:949- 955 https://doi.org/10.1016/j.ijrobp.2006.05.055
  22. Smitsmans MHP, de Bois J, Sonke JJ, et al. Automatic prostate localization on cone- beam CT scans for high precision image- guided radiotherapy. Int J Radiat Oncol Biol Phys 2005; 63:975- 984 https://doi.org/10.1016/j.ijrobp.2005.07.973
  23. Letourneau D, Martinez AA, Lockman D, et al. Assessment of residual error for online cone- beam CT- guided treatment of prostate cancer patients. Int J Radiat Oncol Biol Phys 2005;63:1239- 1246
  24. Litzenberg DW, Balter JM, Lam KL, Sandler HM, Ten Haken RK. Retrospective analysis of prostate cancer patients with implanted gold markers using off- line and adaptive therapy protocols. Int J Radiat Oncol Biol Phys 2005;63:123- 133 https://doi.org/10.1016/j.ijrobp.2005.02.013
  25. Court LE, Dong L, Lee AK, et al. An automatic CT- guided adaptive radiation therapy technique by online modification of multileaf collimator leaf positions for prostate cancer. Int J Radiat Oncol Biol Phys 2005;63:154- 163
  26. Park SW, Oh DH, Bae HS, Cho BC, Park JH, Han SH. Application of intensity modulated radiation therapy (IMRT) in prostate cancer. J Korean Soc Ther Radiol Oncol 2002;20:68- 72