• Title/Summary/Keyword: Seed marker

Search Result 143, Processing Time 0.036 seconds

Analysis of Quantitative Trait Loci (QTLs) for Seed Size and Fatty Acid Composition Using Recombinant Inbred Lines in Soybean (콩 재조합자식계통을 이용한 콩 종자의 크기와 지방산 조성의 양적 형질 유전자좌 분석)

  • Kim, Hyeun-Kyeung;Kim, Yong-Chul;Kim, Sun-Tae;Son, Beung-Gu;Choi, Yong-Whan;Kang, Jum-Soon;Park, Young-Hoon;Cho, Young-Son;Choi, In-Soo
    • Journal of Life Science
    • /
    • v.20 no.8
    • /
    • pp.1186-1192
    • /
    • 2010
  • Soybean [Glycine max(L.) Merr.] is an important crop, accounting for 48% of the world market in oil crops. Improvements in economic traits, such as quality and oil constituents, arethe most important objectives in soybean breeding. The objective of this study was to identify quantitative trait loci (QTLs) that control seed size and fatty acid contents in soybean. 115 $F_{2:10}$ recombinant inbred lines (RIL) developed from a cross of 'Keunolkong' and 'Iksan10' were used. Narrow-sense heritability estimates based on a plot mean on 100 seed weight, saturated fatty acid (palmitic acid + stearic acid), and oleic, linoleic, and linolenic acid content were 0.72, 0.60, 0.83, 0.77 and 0.81, respectively. The 100 seeds weight was related to seven QTLs located on chromosomes 1, 3, 8, 9, 16 and 17. Two independent QTLs for saturated fatty acid content were identified on chromosomes 17 and 19. Five independent QTLs for oleic acid content wereidentified on chromosomes7, 11, 14, 16 and 19. Five QTLs for linoleic acid content were located on chromosomes 2, 11, 14, 16 and 19. Three QTLs for linolenic acid content were located on chromosomes 8, 10 and 19. Oleic, linoleic, and linolenic acid had one major common QTL on chromosome 19. Thus, linoleic and linolenic acid content were identified as common QTLs.

Genetic Diversity and Structure of a Rare and Endemic, Spring Ephemeral Plant Corydalis filistipes Nakai of Ullung Island in Korea (울릉도 희귀.특산 식물 섬현호색의 유전적 다양성과 구조)

  • Kim, Jin-Seok;Yang, Byeong-Hoon;Chung, Jae-Min;Lee, Byeong-Cheon;Lee, Jae-Cheon
    • Journal of Ecology and Environment
    • /
    • v.29 no.3
    • /
    • pp.247-252
    • /
    • 2006
  • For the spring ephemeral and myrmecochorous perennia, Corydalis filistipes Nakai (Fumariaceae), rare and narrow endemic to Ullung Island in Korea, genetic diversity and structure of 4 subpopulations of the species were investigated with allozyme markers. Levels of genetic diversity (A=1.73, $P_{95%}$=61..2%, Ho=0.201, He=0.167) were relatively lower than those of other endemic species with widespread distribution range, but considerably higher than other endemic species with similar life history traits isolated in island. The moderate level of genetic diversity within subpopulations in C. filistipes is characteristic of the species with predominantly outcrossing, myrmecochorous seed dispersal by dual function of the elaisome and mode of sexual and asexual reproduction by the cleistogamy. The analysis of fixation indices showed an overall excess of heterozygotes (mean $F_{IS}=-0.1889,\;F_{IT}=-0.1226$) relative to H-W expectations. About 5.6% of the total genetic variation was found among subpopulations ($F_{ST}$=0.0557). The strategies of reasonable conservation and management, and the maintenance mechanism of genetic diversity of Corydalis filistipes Nakai, endemic plant species in Korea were discussed.

Identification of Quantitative Trait Loci Associated with Leaf Length. Width and Length/width Ratio in Two Recombinant Inbred Lines of Soybean (Glycine max L.) (두 집단의 재조합 근친교잡 계통 (RIL) 콩에서 엽장과 엽폭 및 장폭비와 관련된 양적헝질 유전자좌 분석)

  • Kim, Hyeun-Kyeung;Kang, Sung-Taeg
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.821-828
    • /
    • 2004
  • The increasing apparent photosynthetic rate per leaf area may improve seed yield in soybean. Leaf area, length and width are related to the photosynthetic capability of the plant. In this study, two populations derived from the cross of Keunolkong, Shinpaldalkong and Iksanl0 were evaluated with simple sequence repeat (SSR) markers to identify length, width and length/width ratio of leaf. Leaf length/width ratio were significantly negative correlation with leaf width in K/S and K/I populations. In the K/S population, two minor QTLs for leaf length (LL) were found on LG Dlb+W and 1. Two QTLs on LG J and L were related to LL in K/I population. Two and three minor QTLs were identified in leaf width with total phenotypic variation of 13% and 18.04 in K/S and K/I populations, respectively. The leaf length/width ratio, two QTLs on LG I and L, and three QTLs on LG Cl, E and L were related to K/S and K/I populations, respectively. Thus it is assumed that the leaf traits are very much dependent on the genotype used and different breeding approach should be considered for the selection of favorite leaf traits in soybean breeding programs.

Development of glufosinate-tolerant GMO detection markers for food safety management (식품안전관리를 위한 제초제 glufosinate 특이적 GM 작물 검출마커 개발)

  • Song, Minji;Qin, Yang;Cho, Younsung;Park, TaeSung;Lim, Myung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.40-45
    • /
    • 2020
  • Over 500 genetically modified organisms (GMOs) have been developed since 1996, of which nearly 44% have glufosinate herbicide-tolerant traits. Identification of specific markers that can be used to identify herbicide-tolerant traits is challenging as the DNA sequences of the gene(s) of a trait are highly variable depending on the origin of the gene(s), plant species, and developers. To develop specific PCR marker(s) for the detection of the glufosinate-tolerance trait, DNA sequences of several pat or bar genes were compared and a diverse combination of PCR primer sets were examined using certified reference materials or transgenic plants. Based on both the qualitative and quantitative PCR tests, a primer set specific for pat and non-specific for bar was developed. Additionally, a set of markers that can detect both pat and bar was developed, and the quantitative PCR data indicated that the primer pairs were sensitive enough to detect 0.1% of the mixed seed content rate.

Phylogenetic Study of Korean Chrysosplenium Based on nrDNA ITS Sequences (ITS 염기서열에 의한 한국산 괭이눈속(Chrysosplenium)의 계통학적 연구)

  • Han, Jong-Won;Yang, Sun-Gyu;Kim, Hyun-Jun;Jang, Chang-Gee;Park, Jeong-Mi;Kang, Shin-Ho
    • Korean Journal of Plant Resources
    • /
    • v.24 no.4
    • /
    • pp.358-369
    • /
    • 2011
  • The internal transcribed spacer (ITS) regions of nuclear ribosomal DNA from genus Chrysosplenium were sequenced to address phylogenetic relationship. ITS including 5.8S sequence varied in length from 647 bp to 653 bp. Among them, 219 sites were variable sites with parsimony-informative. The aligned sequences were analyzed by maximum parsimony (MP) and neighbor-joining (NJ) methods. In the strict consensus trees of parsimony analysis, the monophyly of Chrysosplenium was supported by 100% bootstrap value. The first clade, C. pseudofauriei was at the basal position of the genus, and others formed two clades with high bootstrap support. The second clade included Ser. Pilosa and Ser. Oppositifolia and third clade included Ser. Alternifolia and Ser. Flagellifera. The NJ trees showed essentially the same topology. Finally, DNA sequences of ITS regions were useful phylogenetic marker in this genus. Based on the ITS and ridge seed morphological results, C. sphaerospermum Maxim. and C. valdepilosum (Ohwi) S.H. Kang & J.W. Han were discussed their scientific names and taxonomic positions.

A New Rice Variety Developed from an Interspecific Cross, "Hwaweon 2" (종간교잡 유래 중생 다수성 벼 품종 "화원 2호")

  • Ahn, Sang-Nag;Song, Mi-Hee;Kim, Dong-Min;Oh, Chang-Sik;Kang, Ju-Won;Park, In-Kyu
    • Korean Journal of Breeding Science
    • /
    • v.41 no.3
    • /
    • pp.342-345
    • /
    • 2009
  • "Hwaweon 2" was developed from an interspecific cross between Hwaseongbyeo and a wild species, Oryza rufipogon L. (IRGC 105491) based on marker-aided selection. The recurrent parent "Hwaseongbyeo" is a high grain quality cultivar with medium-maturity. Hwaweon 2 is nearly isogenic to Hwaseongbyeo except a small O. rufipogon introgression on chromosome 9. This segment was associated with genes controlling a number of traits including grain weight, heading date, culm length, and spikelets per panicle. The preliminary and replicated yield trial was conducted at Chungnam National University in 2004, 2005 and 2006. The local adaptability test was carried out by the National Seed Management Office (NSMO) in 2007 and 2008. This cultivar was registered to NSMO with a cultivar designated as "Hwaweon 2". This cultivar averaged 98cm in culm length and has a medium to late growth duration. This variety is resistant to stripe virus as the recurrent parent. Milled rice of "Hwaweon 2" is translucent and the grain quality traits are comparable to those of the recurrent parent. The yield potential of "Hwaweon 2" in grain is about 7.68 MT/ha at the ordinary fertilizer level about 14% higher than that of Hwaseongbyeo due to increase in grain weight and spikelets per panicle.

Efficient Transformation Method of Soybean Using Meristematic Tissues of Germinating Seeds (발아종자의 분열조직을 이용한 효율적인 콩 형질전환 방법)

  • Kim, Yul-Ho;Park, Hyang-Mi;Choi, Man-Soo;Sohn, Soo-In;Shin, Dong-Bum;Lee, Jang-Yong
    • Korean Journal of Breeding Science
    • /
    • v.40 no.3
    • /
    • pp.278-285
    • /
    • 2008
  • An efficient transformation method for soybean [Glycine max (L.) Merr.] using meristematic tissues of germinating seeds has been established. The embryonic axes were excised from germinating seeds of Korean soybean cultivar, Iksannamulkong and 0.5-2 cm long segment containing meristematic tissues were prepared by cutting hypocotyl region. The explants were inoculated with Agrobacterium tumefaciens strain LBA4404 harboring a binary vector with the bar gene as a selectable marker gene and a ${\beta}-glucuronidase$ (GUSINT) reporter gene, and then co-cultured for 7 days on co-cultivation medium (CCM). The meristematic tissues were cultured on shoot induction medium (SIMP6) supplemented with 0.4 mg/l $N_6-benzylaminopurine$ (BAP) and 0.1 mg/l indolebutyric acid (IBA) in the presence of 6 mg/l L-phosphinotricin (PPT) for 2 weeks and the surviving explants were transferred to shoot elongation medium (SEMP6). Transformation was confirmed by Southern blot analysis and the transformation efficiencies ranged from 1.48 to 2.07%. The new modified transformation method was successfully implemented for obtaining several transgenic lines with SMV-CP gene. It is expected that this method could efficiently be used for the transformation of recalcitrant soybean cultivars.

QTL Mapping for 6-Year-Old Growths of a Single Open-Pollinated Half-Sib Family of a Selected Clone 7-1037 in Loblolly Pine(Pinus taeda) and Average Effect of QTL Allele Substitution (테다소나무 7-1037 클론의 단일 반형매 풍매가계 6년생 생장에 대한 QTL mapping과 QTL 대립유전자 치환의 평균효과)

  • Kim, Yong-Yul;Lee, Bong-Choon;O'Malley, David M.
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.4
    • /
    • pp.483-494
    • /
    • 2006
  • We conducted QTL mapping for 6-year growths of open-pollinated half-sib progenies from a selected clone 7-1037 in Pinus taeda. With an AFLP marker analysis on haploid DNA samples from the megagametophytes of the open-pollinated seeds, we constructed 20 framework maps spanning a total of 1,869 cM in total length and 18.5 cM in an average interval length between markers. Composite interval mapping reveals that one QTL explains 5.9% of the total phenotypic variation of height, and three QTLs account for 3.9~5.6% of the variation of diameter at breast height (DBH). There are no correlations between the QTLs. The genetic effects of the QTLs are 39.6 cm in height and 7.20~9.41 mm in DBH, respectively, The average effects of gene substitution of the markers closely linked with the QTLs are 44.3 cm in height and 8.38~11.81 m in DBH. Under an assumption that the within-family heritability for the growth traits of loblolly pine is less than 0.2, the QTLs account for 26.8% of the additive genetic variance of the progenies. In terms of relative selection efficiency, the individual selection based on QTL markers could be 5 times as high as phenotypic selection. The results in this study indicate that the QTL mapping method with open-pollinated half-sib family could be more practical and applicable to the conventional seed orchard-based selection work than other mapping methods with a single full-sib family, in particular from the viewpoint that it can provide crucial information for within-family individual selection such as breeding value.

SNP Marker Development for Purity Test of Oriental Melon and Melon (멜론 및 참외 순도 검정을 위한 SNP 마커 개발 및 F1 종자 순도 검정)

  • An, Song-Ji;Kwon, Jin-Kyung;Yang, Hee-Bum;Choi, Hye-Jeong;Jeong, Hee-Jin;Kim, Yong-Jae;Choi, Gyung-Ja;Kang, Byoung-Cheorl
    • Korean Journal of Breeding Science
    • /
    • v.42 no.4
    • /
    • pp.397-406
    • /
    • 2010
  • Field screening method has been commonly used for purity test of $F_1$ hybrid seeds in melon and oriental melon. However, as this method takes a lot of time and cost, molecular marker-based purity test is necessary. To develop molecular markers for purity test, thirty pairs of SNP (single nucleotide polymorphism) primers were obtained from melon EST sequences, and 10 polymorphic markers showing HRM (high resolution melting) polymorphisms between parents of two melon cultivars and one oriental melon cultivar were selected. Blind tests were performed to validate usefulness of the selected markers for purity test. Blind test results showed that HRM genotypes were matched with the expected identity of individual sample, $F_1$ hybrid, male or female parents. Three HRM-based SNP markers were converted to CAPS markers for general use which is favor to breeders. We expect that SNP markers developed in this study will be useful for purity test of $F_1$ hybrid seeds in melon and oriental melon.

Genotypes of commercial sweet corn F1 hybrids

  • Kang, Minjeong;Wang, Seunghyun;Chung, Jong-Wook;So, Yoon-Sup
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.107-107
    • /
    • 2017
  • Sweet corns are enjoyed worldwide as processed products and fresh ears. Types of sweet corn are based on the gene(s) involved. The oldest sweet corn type has a gene called "sugary (su)". Sugary-based sweet corn was typically named "sweet corn". With its relatively short shelf life and the discovery of a complementary gene, "sugary enhanced (se)", the sweet corn (su only) was rapidly replaced with another type of sweet corns, sugary enhanced sweet corn, which has recessive homozygous su/su, se/se genotype. With the incorporation of se/se genotype into existing su/su genotype, sugary enhanced sweet corn has better shelf life and increased sweetness while maintaining its creamy texture due to high level of water soluble polysaccharide, phytoglycogen. Super sweet corn as the name implies has higher level of sweetness and better shelf life than sugary enhanced sweet corn due to "shrunken2 (sh2)" gene although there's no creamy texture of su-based sweet corns. Distinction between sh2/sh2 and su/su genotypes in seeds is phenotypically possible. The Involvement of se/se genotype under su/su genotype, however, is visually impossible. The genotype sh2/sh2 is also phenotypically epistatic to su/su genotype when both genotypes are present in an individual, meaning the seed shape for double recessive sh2/sh2 su/su genotype is much the same as sh2/sh2 +/+ genotype. Hence, identifying the double and triple recessive homozygous genotypes from su, se and sh2 genes involves a testcross to single recessive genotype, chemical analysis or DNA-based marker development. For these reasons, sweetcorn breeders were hastened to put them together into one cultivar. This, however, appears to be no longer the case. Sweet corn companies began to sell their sweet corn hybrids with different combinations of abovementioned three genes under a few different trademarks or genetic codes, i.g. Sweet $Breed^{TM}$, Sweet $Gene^{TM}$, Synergistic corn, Augmented Supersweet corn. A total of 49 commercial sweet corn F1 hybrids with B73 as a check were genotyped using DNA-based markers. The genotype of field corn inbred B73 was +/+ +/+ +/+ for su, se and sh2 as expected. All twelve sugary enhanced sweet corn hybrids had the genotype of su/su se/se +/+. Of sixteen synergistic hybrids, thirteen cultivars had su/su se/se sh2/+ genotype while the genotype of two hybrids and the remaining one hybrid was su/su se/+ sh2/+, and su/su +/+ sh2/+, respectively. The synergistic hybrids all were recessive homozygous for su gene and heterozygous for sh2 gene. Among the fifteen augmented supersweet hybrids, only one hybrid was triple recessive homozygous (su/su se/se sh2/sh2). All the other hybrids had su/su se/+ sh2/sh2 for one hybrid, su/su +/+ sh2/sh2 for three hybrids, su/+ se/se sh2/sh2 for three hybrids, su/+ se/+ sh2/sh2 for four hybrids, and su/+ +/+ sh2/sh2 for three hybrids, respectively. What was believed to be a classic super sweet corn hybrids also had various genotypic combination. There were only two hybrids that turned out to be single recessive sh2 homozygous (+/+ +/+ sh2/sh2) while all the other five hybrids could be classified as one of augmented supersweet genotypes. Implication of the results for extension service and sweet corn breeding will be discussed.

  • PDF