테다소나무 7-1037 클론의 단일 반형매 풍매가계 6년생 생장에 대한 QTL mapping과 QTL 대립유전자 치환의 평균효과

QTL Mapping for 6-Year-Old Growths of a Single Open-Pollinated Half-Sib Family of a Selected Clone 7-1037 in Loblolly Pine(Pinus taeda) and Average Effect of QTL Allele Substitution

  • Kim, Yong-Yul (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Lee, Bong-Choon (Forest Biotechnology Group, Department of Forestry, NCSU) ;
  • O'Malley, David M. (Forest Biotechnology Group, Department of Forestry, NCSU)
  • 투고 : 2006.07.18
  • 심사 : 2006.08.16
  • 발행 : 2006.12.31

초록

테다소나무 7-1037 클론에서 얻은 반형매 풍매 차대의 반수체 DNA에 대해 AFLP 표지자 분석을 수행하여 유전연관지도를 작성하고, 6년생 때의 수고 및 흉고직경 생장에 대한 QTL mapping을 수행하였다. 121개 AFLP 표지자로 전체 연관거리 1,869 cM, marker간 평균거리 18.5 cM의 20개 framework map을 작성하였다. Composite interval mapping 방법에 의해 수고 생장의 전체 표현형 변이의 5.9%를 설명할 수 있는 l개의 QTL과 흉고직경 생장 변이의 3.9~5.6%를 설명할 수 있는 3개의 QTL을 동정하였으며, QTL 간의 상호작용 효과는 없었다. 수고 생장에 대한 QTL의 유전적 효과는 39.6cm이었고, 흉고직경 생장에서는 7.20~9.41 mm인 것으로 추정되었다. 상기 QTL들과 가장 가깝게 연관되어 있는 표지자를 이용하여 대립유전자 치환의 평균효과(average effect of gene substitution)를 산출한 결과, 수고생장에서는 44.3 cm, 흉고직경 생장에서는 8.38~11.81 mm이었다. 테다소나무의 생장에 대한 가계내 개체유전력을 0.2 이하로 가정한다면, 본 연구에서 확인된 QTL은 7-1037 클론의 반형매 풍매 차대가 보유한 상가적 유전분산의 26.8%를 설명할 수 있어 표현형에 의한 개체선발보다 선발효율에서 5배나 높은 것으로 추정되었다. 본 연구에서 제시된 반형매 풍매 차대를 이용한 QTL mapping 분석은 채종원을 기반으로 하는 선발육종 사업에서 필요한 breeding value 등의 정보를 제공한다는 측면에서 인공교배 가계를 이용한 기타의 QTL 분석에 비해 보다 현실적이고 적용성이 높은 방법론이라 생각된다.

We conducted QTL mapping for 6-year growths of open-pollinated half-sib progenies from a selected clone 7-1037 in Pinus taeda. With an AFLP marker analysis on haploid DNA samples from the megagametophytes of the open-pollinated seeds, we constructed 20 framework maps spanning a total of 1,869 cM in total length and 18.5 cM in an average interval length between markers. Composite interval mapping reveals that one QTL explains 5.9% of the total phenotypic variation of height, and three QTLs account for 3.9~5.6% of the variation of diameter at breast height (DBH). There are no correlations between the QTLs. The genetic effects of the QTLs are 39.6 cm in height and 7.20~9.41 mm in DBH, respectively, The average effects of gene substitution of the markers closely linked with the QTLs are 44.3 cm in height and 8.38~11.81 m in DBH. Under an assumption that the within-family heritability for the growth traits of loblolly pine is less than 0.2, the QTLs account for 26.8% of the additive genetic variance of the progenies. In terms of relative selection efficiency, the individual selection based on QTL markers could be 5 times as high as phenotypic selection. The results in this study indicate that the QTL mapping method with open-pollinated half-sib family could be more practical and applicable to the conventional seed orchard-based selection work than other mapping methods with a single full-sib family, in particular from the viewpoint that it can provide crucial information for within-family individual selection such as breeding value.

키워드

참고문헌

  1. Basten, C.J., Weir, B.S. and Zeng, Z.-B. 2000. QTL cartographer version 1.14: a reference manual and tutorial for QTL mapping: Program in Statistical Genetics, Department of Statistics, North Carolina State University, Raleigh, N.C. pp.132
  2. Bovenhuis, H. and Weller, J.I. 1994. Mapping and analysis of dairy cattle quantitative trait loci by maximum likelihood methodology using milk protein genes as genetic markers. Genetics 137: 267-280
  3. Byrne, M., Murrell, J.C., Owen, J.V., Kriedemann, P., Williams, E.R. and Moran, G.F. 1997. Identification and mode of action of quantitative trait loci affecting seedling height and leaf area in Eucalyptus nitens. Theor. Appl. Genet. 94: 674-681 https://doi.org/10.1007/s001220050465
  4. Churchill, G. A. and Doerge, R.W. 1994. Empirical threshold values of quantitative trait mapping. Genetics 138: 963-971
  5. Dentine, M.R. and Cowan, C.M. 1990. An analytical model for the estimation of chromosome substitution effects in the offspring of individuals heterozygous at a segregating marker locus. Theor. Appl. Genet. 79: 775-780
  6. Falconer, D.S. and Mackay, T.F.C. 1996. Introduction to Quantitative Genetics. 4th ed. Longman. Longman House, Essex, England. pp. 436
  7. Frewen, B.E., Chen, T.H.H., Howe, G.T., Davis, J., Rohde, A., Boerjan, W. and Bradshaw Jr., H.D. 2000. Quantitative trait loci and candidate gene mapping of bud set and bud flush in Populus. Genetics 154: 837-845
  8. Gelderman, H. 1975. Investigation on inheritance of quantitative characters in animals by gene markers. I. Methods. Theor. Appl. Genet. 46: 300-319
  9. Georges, M., Nielsen, D., Mackinnon, M., Mishra, A., Okimoto, R., Pasquino, A.T., Sargeant, L.S., Sorenson, A., Steele, M.R., Zhao, X., Womack, J.E. and Hoeschele, I. 1995. Mapping quantitative trait loci controlling milk production in dairy cattle by exploring progeny testing. Genetics 139: 907-920
  10. Grattapaglia, D., Bertolucci, F.L.G. and Sederoff, R.R. 1995. Genetic mapping of QTLs controlling vegetative propagation in Eucalyptus grandis and E. urophylla using a pseudo-test cross mapping strategy and RAPD markers. Theor. Appl. Genet. 90: 933-947
  11. Grattapaglia, D., Bertolucci, F.L.G., Penchel, R. and Sederoff R.R. 1996. Genetic mapping of quantitative trait loci controlling growth and wood quality traits in Eucalyptus grandis using a maternal half-sib family and RAPD markers. Genetics 144: 1205-1214
  12. Kaya, Z., Sewell, M.M. and Neale, D.B. 1999. Identification of quantitative trait loci infulencing annual heigh and diameter-increment growth in loblolly pine (Pinus taeda L.). Theor. Appl. Genet. 98: 586-592 https://doi.org/10.1007/s001220051108
  13. Knott, S.A., Elsen, J.M. and Haley, C.S. 1996. Methods for multiple marker mapping of quantitative trait loci in half-sib populations. Theor. Appl. Genet. 93: 71-80 https://doi.org/10.1007/BF00225729
  14. Knott, S.A., Neale, D.B., Sewell, M.M. and Haley, C.S. 1997. Multiple marker mapping of quantitattive trait loci in an outbred pedigree of loblolly pine. Theor. Appl. Genet. 94: 810-820 https://doi.org/10.1007/s001220050482
  15. Koning, D.-J. de, Visscher, P.M., Knott, S.A. and Haley, C.S. 1998. A strategy for QTL detection in half-sib populations. Ann. Sci. 67: 257-268
  16. Lambeth, C., Lee, B.-C., O'Malley, D.M. and Wheeler, N. 2001. Polymix breeding with parental analysis of progeny: an alternative to full-sib breeding and testing. Theor. Appl. Genet. 103: 930-943 https://doi.org/10.1007/s001220100627
  17. Lande, R. and Thompson, R. 1990. Efficiency of markerassisted selection in the improvement of quantitative traits. Genetics 124: 743-756
  18. Lynch, M. and Walsh, B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Inc. Sunderland, U.S.A. pp. 970
  19. McKeand, S. and Bridgwater, F. 1995. Variance component and genetic gain estimates from 6-year-old diallel tests of loblolly pine. Proceedings of the 23th SFTIC, pp. 197-203,20-22 Jun. 1995, Asheville, NC
  20. O'Malley, D.M., Grattapaglia, D., Chaparro, J.X, Wilcox, P.L., Amerson, H.Y., Liu, B.-H., Whetten, R., McKeand, S., Kuhlman, E.G., McCord, S., Crane, B. and Sederoff, R. 1996. Molecular markers, forest genetics, and tree breeding. pp. 87-102. In : J. Perry and R.B. Flavell, ed. Genomes of Plants and Animals : 21 st Stadler Genetics Symposium. Plenum Press. New York
  21. O'Malley, D.M. and McKeand, S.E. 1994. Marker assisted selection for breeding value in forest trees. Forest Genetics 1: 207-218
  22. Remington, D.L. and O'Malley, D.M. 2000. Whole-genome characterization of embryonic stage inbreeding depression in a selfed loblolly pine family. Genetics 155: 337-348
  23. Remington, D.L., Whetten, R.W., Liu, B.-H. and O'Malley, D.M. 1999. Construction of an AFLP genetic map with nearly complete genome coverage in Pinus taeda. Theor. Appl. Genet. 98: 1279-1292 https://doi.org/10.1007/s001220051194
  24. Ronin, Y.I., Korol, A.B. and Weller, J.I. 1998. Selecive genotyping to detect quantitative trait loci affecting multiple traits : interval mapping analysis. Theor. AppI. Genet. 97: 1169-1178 https://doi.org/10.1007/s001220051006
  25. Strauss, S.H., Lande, R. and Namkoong, G. 1992. Limitations of molecular-marker-aided selection in forest tree breeding. Can. J. For. Res. 22: 1050-1061 https://doi.org/10.1139/x92-140
  26. Taylor, G., Beckett, K.P., Robinson, K.M., Stiles, K. and Rae, A.M. 2001. Identifying QTL for yield in UK biomass poplar. Aspects of Applied Biology 65: 173-182
  27. Taylor, J.F. and Rocha, J.L. 1998. QTL analysis under linkage equilibrium. pp 103-113. In: A.H. Paterson, ed. Molecular dissection of complex traits. CRC press. Boca Ralton, New York
  28. Van Buijtenen, J.P. and Burdon, R.D. 1990. Expected efficiencies of mating designs for advanced-generation selection. Can. J. For. Res. 20: 1648-1663 https://doi.org/10.1139/x90-218
  29. Wang, J., Podlich, D.W., Cooper, M. and Del.acy, I.H. 2001. Power of the joint segregation analysis method for testing mixed major-gene and polygene inheritance models of quantitative traits. Theor. Appl, Genet. 103: 804-816 https://doi.org/10.1007/s001220100628
  30. Weller, J .I., Kashi, Y. and Soller, M. 1990. Power of daughter and granddaughter designs for determining linkage between marker loci and quantitative trait loci in dairy cattle. J. Dairy Science 73: 2525-2537 https://doi.org/10.3168/jds.S0022-0302(90)78938-2
  31. Williams, C.G. and Neale, D.B. 1992. Conifer wood quality and marker-aided selection: a case study. Can. J. For. Res. 22: 1009-1017 https://doi.org/10.1139/x92-135
  32. Wu, R.L. 1998. Genetic mapping of QTLs affecting tree growth and architecture in Populus : implication for ideotype breeding. Theor. Appl, Genet. 96: 447-457 https://doi.org/10.1007/s001220050761
  33. Zeng, Z-8. 1994. Precision mapping of quantitative trait loci. Genetics 132: 1457-1468
  34. Zobel, B. and Talbert, J. 1984. Applied Forest Tree Improvement. John Wiley & Sons, Inc., New York, USA. pp.505