• Title/Summary/Keyword: Security Function Requirements

Search Result 96, Processing Time 0.022 seconds

A study on Communication Robustness Testing for Industrial Control Devices (산업용 제어기기의 통신 견고성 시험 방안 연구)

  • Park, Kyungmi;Shin, Donghoon;Kim, WooNyon;Kim, SinKyu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.5
    • /
    • pp.1099-1116
    • /
    • 2019
  • Industrial control systems(ICS) are widely used in various industrial area and critical infrastructure. To mitigate security threats on ICS, the security assurance test for industrial control devices has been introduced and operating. The test includes testing of the security function of the device itself and testing of communication robustness. In this paper, we describe the security requirements of EDSA, Achilles, and Korea's TTA standard(security requirements for ICS). And also, we analyzed the characteristics of communication robustness test(CRT) of each certification. CRT verifies the device's operation of essential function while transmitting fuzzing and stress packets. Existing test methods are mostly focused on the embedded devices and are difficult to apply to various devices. We propose a method to test communication robustness which reflect the characteristics of control H/W, control S/W, field devices and network devices in ICS. In the future, we will apply the proposed communication robustness test to actual products and present solutions for arising issues.

IEEE 802.15.4e TSCH-mode Scheduling in Wireless Communication Networks

  • Ines Hosni;Ourida Ben boubaker
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.156-165
    • /
    • 2023
  • IEEE 802.15.4e-TSCH is recognized as a wireless industrial sensor network standard used in IoT systems. To ensure both power savings and reliable communications, the TSCH standard uses techniques including channel hopping and bandwidth reserve. In TSCH mode, scheduling is crucial because it allows sensor nodes to select when data should be delivered or received. Because a wide range of applications may necessitate energy economy and transmission dependability, we present a distributed approach that uses a cluster tree topology to forecast scheduling requirements for the following slotframe, concentrating on the Poisson model. The proposed Optimized Minimal Scheduling Function (OMSF) is interested in the details of the scheduling time intervals, something that was not supported by the Minimal Scheduling Function (MSF) proposed by the 6TSCH group. Our contribution helps to deduce the number of cells needed in the following slotframe by reducing the number of negotiation operations between the pairs of nodes in each cluster to settle on a schedule. As a result, the cluster tree network's error rate, traffic load, latency, and queue size have all decreased.

An Enhanced Privacy-Aware Authentication Scheme for Distributed Mobile Cloud Computing Services

  • Xiong, Ling;Peng, Daiyuan;Peng, Tu;Liang, Hongbin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.6169-6187
    • /
    • 2017
  • With the fast growth of mobile services, Mobile Cloud Computing(MCC) has gained a great deal of attention from researchers in the academic and industrial field. User authentication and privacy are significant issues in MCC environment. Recently, Tsai and Lo proposed a privacy-aware authentication scheme for distributed MCC services, which claimed to support mutual authentication and user anonymity. However, Irshad et.al. pointed out this scheme cannot achieve desired security goals and improved it. Unfortunately, this paper shall show that security features of Irshad et.al.'s scheme are achieved at the price of multiple time-consuming operations, such as three bilinear pairing operations, one map-to-point hash function operation, etc. Besides, it still suffers from two minor design flaws, including incapability of achieving three-factor security and no user revocation and re-registration. To address these issues, an enhanced and provably secure authentication scheme for distributed MCC services will be designed in this work. The proposed scheme can meet all desirable security requirements and is able to resist against various kinds of attacks. Moreover, compared with previously proposed schemes, the proposed scheme provides more security features while achieving lower computation and communication costs.

Security Enhancements for Distributed Ledger Technology Systems Based on Open Source (오픈소스 기반 분산원장기술 시스템을 위한 보안 강화 방안)

  • Park, Keundug;Kim, Dae Kyung;Youm, Heung Youl
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.4
    • /
    • pp.919-943
    • /
    • 2019
  • Distributed ledger technology, which is attracting attention as an emerging technology related to the 4th Industrial Revolution, is implemented as an open source based distributed ledger technology system and widely used for development with various applications (or services), but the security functions provided by the distributed general ledger system are very insufficient. This paper proposes security enhancements for distributed ledger technology systems based on open source. To do so, potential security threats that may occur under running an open source based distributed ledger technology systems are identified and security functional requirements against the security threats identified are provided by analyzing legislation and security certification criteria (ISMS-P). In addition, it proposes a method to implement the security functions required for an open source based distributed ledger technology systems through analysis of security functional components of Common Criteria (CC), an international standard.

A Security Policy Statements Generation Method for Development of Protection Profile (PP 개발을 위한 보안정책 문장 생성방법)

  • 고정호;이강수
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.4
    • /
    • pp.13-28
    • /
    • 2003
  • The Protection Profile(PP) is a common security function and detailed statement of assurance requirements in a specific class of Information Technology security products such as firewall and smart card. The parts of TOE security environment in the PP have to be described about assumption, treat and security policy through analyzing purpose of TOE. In this paper, we present a new security policy derivation among TOE security environment parts in the PP. Our survey guides the organizational security policy statements in CC scheme through collected and analyzed hundred of real policy statements from certified and published real PPs and CC Toolbox/PKB that is included security policy statements for DoD. From the result of the survey, we present a new generic organizational policy statements list and propose a organizational security policy derivation method by using the list.

Evaluation Index System for Disaster Prevention Signs in Urban Shelters in China

  • Song, Chen;Zhang, Jingxing;Kim, Tae-Hwan
    • Fire Science and Engineering
    • /
    • v.30 no.1
    • /
    • pp.81-85
    • /
    • 2016
  • Reasonable disaster prevention signs play an important role in guiding evacuation. Through the field investigation on disaster prevention signs in shelters and surrounding areas in Beijing, some problems were found in the using of sign system. Based on the principle of integrated design, evacuation and rescue requirements, it is necesssary to make further study on aspects such as, design of function, systematic consideration, humanization design, as well as the internationalization using. This paper presents an evaluation index system for disaster prevention signs. Such a system is very important for strengthening the independent guiding function of sign systems and improving evacuation efficiency. An effective connection could be realized between the internal environment of buildings, evacuation routes, and emergencey shelters.

Message Encryption Methods for DDS Security Performance Improvement (DDS Security 성능 향상을 위한 메시지 암호화 기법 연구)

  • Han, Jae-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.11
    • /
    • pp.1554-1561
    • /
    • 2018
  • This paper surveys the DDS, a real - time communication middleware, and proposes ways to improve the DDS secure communication performance. DDS is a communication middleware standard by the OMG. The OMG has released the DDS Security standard to resolve the security issues. The security performance of DDS can be considered into transmission speed and confidentiality. In terms of confidentiality, AES-GCM, currently the encryption algorithm specified by DDS Security, is a very strong encryption algorithm, but there are well known weaknesses associated with authentication. In terms of speed, The computational load for the security function is a restriction to use DDS in systems which requires real-time performance. Therefore, in order to improve the DDS security, algorithms that are faster than AES-GCM and strong in encryption strength are needed. In this paper, we propose a DDS message encryption method applying AES-OCB algorithm to meet these requirements and Compared with the existing DDS, the transmission performance is improved by up to 12%.

Real-Time File Access Event Collection Methodology for Zero Trust Environment (제로 트러스트 환경의 실시간 파일 접근 이벤트 수집 방법에 관한 연구)

  • Han, Sung-Hwa;Lee, Hoo-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1391-1396
    • /
    • 2021
  • The boundary-based security system has the advantage of high operational efficiency and easy management of security solutions, and is suitable for denying external security threats. However, since it is operated on the premise of a trusted user, it is not suitable to deny security threats that occur from within. A zero trust access control model was proposed to solve this problem of the boundary-based security system. In the zero trust access control model, the security requirements for real-time security event monitoring must be satisfied. In this study, we propose a monitoring method for the most basic file access among real-time monitoring functions. The proposed monitoring method operates at the kernel level and has the advantage of fundamentally preventing monitoring evasion due to the user's file bypass access. However, this study focuses on the monitoring method, so additional research to extend it to the access control function should be continued.

Implementation and Evaluation of Multi-level Secure Linux (다중등급 보안 리눅스 구현 및 시험평가)

  • 손형길;박태규;이금석
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.3
    • /
    • pp.311-321
    • /
    • 2003
  • A current firewall or IDS (intrusion detection system) of the network level suffers from many vulnerabilities in internal computing servers. For a secure Linux implementation using system call hooking, this paper defines two requirements such as the multi-level security function of TCSEC B1 and a prevention of hacking attacks. This paper evaluates the secure Linux implemented in terms of the mandatory access control, anti-hacking and performance overhead, and thus shows the security, stability and availability of the multi-level secure Linux. At the kernel level this system protects various hacking attacks such as using Setuid programs, inserting back-door and via-attacks. The performance degradation is an average 1.18% less than other secure OS product.

SD-MTD: Software-Defined Moving-Target Defense for Cloud-System Obfuscation

  • Kang, Ki-Wan;Seo, Jung Taek;Baek, Sung Hoon;Kim, Chul Woo;Park, Ki-Woong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.1063-1075
    • /
    • 2022
  • In recent years, container techniques have been broadly applied to cloud computing systems to maximize their efficiency, flexibility, and economic feasibility. Concurrently, studies have also been conducted to ensure the security of cloud computing. Among these studies, moving-target defense techniques using the high agility and flexibility of cloud-computing systems are gaining attention. Moving-target defense (MTD) is a technique that prevents various security threats in advance by proactively changing the main attributes of the protected target to confuse the attacker. However, an analysis of existing MTD techniques revealed that, although they are capable of deceiving attackers, MTD techniques have practical limitations when applied to an actual cloud-computing system. These limitations include resource wastage, management complexity caused by additional function implementation and system introduction, and a potential increase in attack complexity. Accordingly, this paper proposes a software-defined MTD system that can flexibly apply and manage existing and future MTD techniques. The proposed software-defined MTD system is designed to correctly define a valid mutation range and cycle for each moving-target technique and monitor system-resource status in a software-defined manner. Consequently, the proposed method can flexibly reflect the requirements of each MTD technique without any additional hardware by using a software-defined approach. Moreover, the increased attack complexity can be resolved by applying multiple MTD techniques.