• Title/Summary/Keyword: Sectional forming

Search Result 84, Processing Time 0.022 seconds

The Thermal Reaction and Oxygen Behavior in the Annealed TiN/Ti/Si Structures (열처리에 따른 TiN/Ti/Si 구조의 열적반응 및 산소원자의 거동에 관한 연구)

  • 류성용;신두식;최진성;오원웅;오재응;백수현;김영남;심태언;이종길
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.7
    • /
    • pp.73-81
    • /
    • 1992
  • We have investigated the thermal reaction property and the oxygen behavior of TiN/Ti/Si structure after different hear treatments using x-ray photoelectron spectroscopy and cross-sectional transmission electron microscopy measurements. During the heat treatment in N$_2$ amibient, the considerable amount of oxygen atoms incorporates into TiN/Ti/Si Structures. It is found that oxygen atoms pile up at the top surface of TiN and TiN/Ti interface, forming a compound of TiO$_2$ above $600^{\circ}C$. Inside the TiN film, the oxygen content increases as the annealing temperature increases, mostly TiO and Ti$_2$O$_3$ rather than thermodynamically stable TiO$_2$. Above the annealing temperature of 55$0^{\circ}C$, the TiSi$_2$ formation has initiated. One thing to note is that a severe blistering is observed in the sample annealed at $600^{\circ}C$, due to (1) the difference of thermal expansion coefficient between TiN and Si` (2) the compressive stress induced by the volume reduction caused by the Ti-Silicide grain while elevating temperatures.

  • PDF

Microfabrication of Micro-Conductive patterns on Insulating Substrate by Electroless Nickel Plating (무전해 니켈 도금을 이용한 절연기판상의 미세전도성 패턴 제조)

  • Lee, Bong-Gu;Moon, Jun Hee
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.90-100
    • /
    • 2010
  • Micro-conductive patterns were microfabricated on an insulating substrate ($SiO_2$) surface by a selective electroless nickel plating process in order to investigate the formation of seed layers. To fabricate micro-conductive patterns, a thin layer of metal (Cu.Cr) was deposited in the desired micropattern using laser-induced forward transfer (LIFT). and above this layer, a second layer was plated by selective electroless plating. The LIFT process. which was carried out in multi-scan mode, was used to fabricate micro-conductive patterns via electroless nickel plating. This method helps to improve the deposition process for forming seed patterns on the insulating substrate surface and the electrical conductivity of the resulting patterns. This study analyzes the effect of seed pattern formation by LIFT and key parameters in electroless nickel plating during micro-conductive pattern fabrication. The effects of the process variables on the cross-sectional shape and surface quality of the deposited patterns are examined using field emission scanning electron microscopy (FE-SEM) and an optical microscope.

New record of three economic Hypnea species (Gigartinales) in Korea

  • Kang, Pil Joon;Nam, Ki Wan
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.11
    • /
    • pp.31.1-31.7
    • /
    • 2018
  • Three economic marine algae that have been used as food and carrageenan sources were collected from Korea during a survey of marine algal flora. They share the generic features of Hypnea, and three major clades supported by the sectional features were confirmed in a phylogenetic tree based on rbcL sequences. The first species, which belongs to a species group corresponding to the sect. Spinuligerae, nests in the same clade with Hypnea yamadae in a genetic distance of 0%. It is morphologically characterized by an entangled base, subcompressed or subterete to terete axes, somewhat percurrent main axis, irregularly alternately branching with wide angle, and rarely hooked spinous branchlets. The second one is also referred to the sect. Spinuligerae and formed the same clade as Hypnea cenomyce. The genetic distance between both sequences was calculated as 0.0-0.1%, which is considered to be intraspecific. This species is distinct by somewhat entangled thallus at the basal part, percurrent axis, short spine-like branchlets densely covering the axis, and medullary lenticular thickenings. The third alga, which forms a species group corresponding to the sect. Pulvinatae, nests in the same clade as Hypnea nidulans (no intraspecific divergence). It shows occasionally epiphytic habitat rather than epilithic habitat of low mat-forming growth and percurrent erect main axes with dense lateral branchlets. Based on these morphological and molecular data, the three Korean species are identified as H. yamadae, H. cenomyce, and H. nidulans. This is the first record of the Hypnea species in Korea.

Effect of AZ31 PEO Coating Layer Formation According to Alginic Acid Concentration in Electrolyte Solution

  • Kim, Min Soo;Kim, Jong Seop;Park, Su Jeong;Koo, Bon Heun
    • Korean Journal of Materials Research
    • /
    • v.32 no.6
    • /
    • pp.301-306
    • /
    • 2022
  • This study explored the possibility of forming a coating layer containing alginic acid on the surface of a magnesium alloy to be used as a biomaterial. We formed a coating layer on the surface of a magnesium alloy using a plasma electrolytic oxidation process in an electrolytic solution with different amounts of alginic acid (0 g/L ~ 8 g/L). The surface morphology of all samples was observed, and craters and nodules typical of the PEO process were formed. The cross-sectional shape of the samples confirmed that the thickness of the coating layer became thicker as the alginic acid concentration increased. It was confirmed that the thickness and hardness of the sample significantly increase with increasing alginic acid concentration. The porosity of the surface and cross section tended to decrease as the alginic acid concentration increased. The XRD patterns of all samples revealed the formation of MgO, Mg2SiO4, and MgF2 complex phases. Polarization tests were conducted in a Stimulate Body Fluid solution similar to the body's plasma. We found that a high amount of alginic acid concentration in the electrolyte improved the degree of corrosion resistance of the coating layer.

Sustained release of alginate hydrogel containing antimicrobial peptide Chol-37(F34-R) in vitro and its effect on wound healing in murine model of Pseudomonas aeruginosa infection

  • Shuaibing Shi;Hefan Dong;Xiaoyou Chen;Siqi Xu;Yue Song;Meiting Li;Zhiling Yan ;Xiaoli Wang ;Mingfu Niu ;Min Zhang;Chengshui Liao
    • Journal of Veterinary Science
    • /
    • v.24 no.3
    • /
    • pp.44.1-44.17
    • /
    • 2023
  • Background: Antibiotic resistance is a significant public health concern around the globe. Antimicrobial peptides exhibit broad-spectrum and efficient antibacterial activity with an added advantage of low drug resistance. The higher water content and 3D network structure of the hydrogels are beneficial for maintaining antimicrobial peptide activity and help to prevent degradation. The antimicrobial peptide released from hydrogels also hasten the local wound healing by promoting epithelial tissue regeneration and granulation tissue formation. Objective: This study aimed at developing sodium alginate based hydrogel loaded with a novel antimicrobial peptide Chol-37(F34-R) and to investigate the characteristics in vitro and in vivo as an alternative antibacterial wound dressing to treat infectious wounds. Methods: Hydrogels were developed and optimized by varying the concentrations of crosslinkers and subjected to various characterization tests like cross-sectional morphology, swelling index, percent water contents, water retention ratio, drug release and antibacterial activity in vitro, and Pseudomonas aeruginosa infected wound mice model in vivo. Results: The results indicated that the hydrogel C proved superior in terms of cross-sectional morphology having uniformly sized interconnected pores, a good swelling index, with the capacity to retain a higher quantity of water. Furthermore, the optimized hydrogel has been found to exert a significant antimicrobial activity against bacteria and was also found to prevent bacterial infiltration into the wound site due to forming an impermeable barrier between the wound bed and external environment. The optimized hydrogel was found to significantly hasten skin regeneration in animal models when compared to other treatments in addition to strong inhibitory effect on the release of pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor-α). Conclusions: Our results suggest that sodium alginate -based hydrogels loaded with Chol-37(F34-R) hold the potential to be used as an alternative to conventional antibiotics in treating infectious skin wounds.

Comparison of Mechanical and Interfacial Properties of Carbon Fiber Reinforced Recycled PET Composites with Thermoforming Temperature and Time (열 성형 온도 및 시간에 따른 탄소섬유 강화 재활용 PET 복합재료의 계면 및 기계적 물성 비교)

  • Baek, Yeong-Min;Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Ha-Seung;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.175-180
    • /
    • 2017
  • Currently, since carbon fiber reinforced plastics (CFRPs) are lightweight and have excellent physical properties, their demand has increased dramatically. Many works have studied the CFRPs based on recycled thermoplastics. In this study, the applicability of recycled composite was evaluated using recycled polyethylene terephthalate (PET). PET was collected from waste materials used in beverage bottles and processed to produce PET films. Optimal thermoforming temperature and time were analyzed by comparing the mechanical properties with forming temperature and time difference for producing PET films. CF mat and PET film were used to determine the suitable parameters for the optimum thermoforming of CF/PET composites. The mechanical properties of each thermoforming condition were verified by bending test. The degree of impregnation of the PET film into the CF mat was evaluated by cross-sectional photographs, whereas the interfacial properties were evaluated by interlaminar shear strength (ILSS). Ultimately, it was confirmed that the thermoforming condition for forming the CF/recycled PET composites yielding the optimal mechanical and interfacial properties was at $270^{\circ}C$ for 5 minutes.

The genesis of Ulsan carbonate rocks: a possibility of carbonatite\ulcorner (울산 광산에 분포하는 탄산염암체의 성인에 관한 연구: 카보내타이트의 가능성)

  • 양경희;황진연;옥수석
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.1-12
    • /
    • 2001
  • A small of carbonate rocks and spatially-associated ultramafic rocks uniquely occur in the ulsan iron-serpentine mine of the sourtheastern Kyungsang basin. The study of field geology, core drilling data and stable isotope analysis suggest that the carbonate rocks are carbonatite formed from the melt reflecting intrusive natures. Based on this study, the geology of the Ulsan iron-serpentinite mining area consists of Cretaceous sedimentary, volcanic, granitic ultramafic and carbonate rocks in ascending order. The carbonate and ultramafic rocks show concentric and ellipsoidal shapes at the outcrop and a funnel shape in the cross sectional view. Carbon and oxygen stable isotope analysis show a bimodal pattern rather than a typical mantle pattern, which may indicate that the melt was a secondary melt generated within the crus not in the mantle directly. The uprising of ultramafic melts would have melted lime-contained rocks forming a secondary carbonate melt in the upper crus. Then, the intrusion of the ultramafic melts would have melted lime-contained rocks forming a secondary carbonate melt in the upper crust. Then, the intrusion of the ultramafic melt was followed by the intrusion of the carbonate melt along deep-seated fractures. Well-developed major fractures in this area, fluid inclusion characteristics of the carbonate rocks, the spatial relation between the ultramafic and carbonate rocks and stable isotope data support interpreting the Ulsan carbonate rocks as carbonatite.

  • PDF

Flow Simulation of Chamber System to Obtain Particle Uniformity and Study on Bio-aerosol Reduction Test (입자 균등성 확보를 위한 시험 챔버의 유동 시뮬레이션 및 이를 이용한 기상 부유균 저감 특성의 실험적 연구)

  • Park, Dae-Hoon;Hyun, Junho;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.10 no.2
    • /
    • pp.83-91
    • /
    • 2014
  • Since airborne bacteria have been known to aggravate indoor air quality, studies on reducing bacteria particles increase recently. In this study, a chamber(0.8m x 0.8m x 1.56m) system was built in order to simulate real conditions for reducing airborne bacteria, and evaluated by a simple aerosol reduction test. A method utilizing CFD(Computational Fluid Dynamics) simulation was used to detect the horizontal cross-sectional area which represents particle distribution in the chamber. Then an air-cleaner with HEPA filter and Carbon Fiber Ionizer was located on that area for aerosol reduction test. The CFD result found the area was located at 0.2m height from the bottom of the chamber, and the test showed aerosol reduction efficiencies using measurements of number concentration and CFU(colony forming unit) per each case. At the measurement of number concentration, the reduction efficiency of air-cleaner with filter and ionizer(Case 3) was about 90% after 4 minutes from the stop of the bacteria injection, and that with only filter(Case 2) was about 90% after 8 minutes from the beginning. Lastly, that without filter and ionizer(Case 1) was about 30% after 10 minutes. At the measurement of CFU, it shows similar results but it is related to viability of bio-aerosol.

Mechanism of Micro-V Grooving with Single Crystal Diamond Tool (단결정 다이어몬드 공구를 이용한 Micro-V 홈 가공기구)

  • Park D.S.;Seo T.I.;Kim J.K.;Seong E.J.;Han J.Y.;Lee E.S.;Cho M.W.;Choi D.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1223-1227
    • /
    • 2005
  • Fine microgroove is the key component to fabricate micro-grating, micro-grating lens and so on. Conventional groove fabrication methods such as etching and lithography have some problems in efficiency and surface integrity. This study deals with the creation of ultra-precision micro grooves using non-rotational diamond tool and CNC machining center. The shaping type machining method proposed in the study allows to produce V-shaped grooves of $40\mu{m}$ in depth with enough dimensional accuracy and surface. For the analysis of machining characteristics in micro V-grooving, three components of cutting forces and AE signal are measured and processed. Experimental results showed that large amplitude of cutting forces and AE appeared at the beginning of every cutting path, and cutting forces had a linear relation with the cross-sectional area of uncut chip thickness. From the results of this study, proposed micro V-grooving technique could be successfully applied to forming the precise optical parts like prism patterns on light guide panel of TFT-LCD.

  • PDF

A study on carbon composite fabrication using injection/compression molding and insert-over molding (사출/압축 공정과 인서트 오버몰딩을 이용한 탄소복합소재 성형에 대한 연구)

  • Jeong, Eui-Chul;Yoon, Kyung-hwan;Hong, Seok-Kwan;Lee, Sang-Yong;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.11-16
    • /
    • 2020
  • In this study, forming of carbon composite parts was performed using an injection/compression molding process. An impregnation of matrix is determined by ability of wet and flow rate between the matrix and reinforcement. The flow rate of matrix passing through the reinforcements is a function of permeability of reinforcement, a viscosity of matrix and pressure gradient on molding, and the viscosity of the matrix depends on the mold temperature, molding pressure and shear strain of matrix. Therefore, compression molding experiment was conducted using a heating mold in order to confirm the possibility of matrix impregnation. The impregnation of the matrix through the porosities between the woven yarns was confirmed by the cross-sectional SEM image of compression molded parts. An injection molding process was also performed at a short cycle time, high molding pressure and low mold temperature than those of compression experiment conditions. Deterioration of impregnation on the surface of molded parts were caused by these injection conditions and it could be the reason of decreasing the maximum tensile strength. In order to improve impregnation of matrix on the surface, injection/compression molding and insert-over molding were applied. As a result of applying injection/compression molding and insert-over molding, it was shown that the improvement of impregnation on the surface and the maximum tensile strength was increased about 2.8 times than the virgin matrix.