Browse > Article
http://dx.doi.org/10.3740/MRSK.2022.32.6.301

Effect of AZ31 PEO Coating Layer Formation According to Alginic Acid Concentration in Electrolyte Solution  

Kim, Min Soo (School of Advanced Defense Engineering, College of Interdisciplinary Cooperative Process, Changwon National University)
Kim, Jong Seop (Department of Materials Convergence and System Engineering, Changwon National University)
Park, Su Jeong (Department of Materials Convergence and System Engineering, Changwon National University)
Koo, Bon Heun (School of Materials Science and Engineering, Changwon National University)
Publication Information
Korean Journal of Materials Research / v.32, no.6, 2022 , pp. 301-306 More about this Journal
Abstract
This study explored the possibility of forming a coating layer containing alginic acid on the surface of a magnesium alloy to be used as a biomaterial. We formed a coating layer on the surface of a magnesium alloy using a plasma electrolytic oxidation process in an electrolytic solution with different amounts of alginic acid (0 g/L ~ 8 g/L). The surface morphology of all samples was observed, and craters and nodules typical of the PEO process were formed. The cross-sectional shape of the samples confirmed that the thickness of the coating layer became thicker as the alginic acid concentration increased. It was confirmed that the thickness and hardness of the sample significantly increase with increasing alginic acid concentration. The porosity of the surface and cross section tended to decrease as the alginic acid concentration increased. The XRD patterns of all samples revealed the formation of MgO, Mg2SiO4, and MgF2 complex phases. Polarization tests were conducted in a Stimulate Body Fluid solution similar to the body's plasma. We found that a high amount of alginic acid concentration in the electrolyte improved the degree of corrosion resistance of the coating layer.
Keywords
plasma electrolytic oxidation; x-ray diffraction; scanning electron microscope; hardness; porosity;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 A. L. Rudd, C. B. Breslin and F. Mansfeld, Corros. Sci., 42, 275 (2000).   DOI
2 C. Christoglou, N. Voudouris, G. Angelopoulos, M. Pant and W. Dahl, Surf. Coat. Technol., 184, 149 (2004).   DOI
3 S. Moon and D. Kwon, J. Korean Inst. Surf. Eng., 49, 225 (2016).   DOI
4 G. L. Song, J. Meng, W. Sun, Z. Tian, X. Qiu, D. Zhang, X. Guo, D. Hoche, J. D. Majumdar, I. Manna, B. l. Jiang, Y. F. Ge, S. A. Salman, M. Okido, X. Chen, K. Azumi, Z. Wang, W. T. Tsai, I. W. Sun, V. K. Champagne, B. Gabriel, J. Villafuerte, Q. Li, G. S. Cole, K. Yang, L. Tan, Corrosion Prevention of Magnesium Alloys, p. 232-281, G. L. Song, Woodhead Publishing, United Kingdom, (2013).
5 S. Moon and Y. Kim, J. Korean Inst. Surf. Eng., 49, 331 (2016).   DOI
6 Y. G. Ko, N. G. Seung and D. H. Shin, Surf. Coat. Technol., 205, 2525 (2010),   DOI
7 K. I. Draget, G. S. Braek and O. Smidrod, Carbohydr. Polym., 25, 31 (1994).   DOI
8 B. Mordike and T. Ebert, Mater. Sci. Eng.: A, 302, 37 (2001).   DOI
9 Y. Mizutani, S. Kim, R. Ichino and M. Okido, Surf. Coat. Technol., 169, 143 (2003).   DOI
10 S. Moon, Y. Kim and C. Yang, J. Korean Inst. Surf. Eng., 50, 308 (2017).   DOI
11 R. Hussein, X. Nie, D. Northwood, A. Yerokhin and A. Matthews, J. Phys. D: Appl. Phys., 43, 105203 (2010).   DOI
12 M. E. Maguire and J. A. Cowan, Biometals, 15, 203 (2002).   DOI
13 E. Zhang, L. Xu and K. Yang, Scr. Mater., 53, 523 (2005).   DOI
14 F. Hollstein, R. Wiedemann and J. Scholz, Surf. Coat. Technol., 162, 261 (2003).   DOI
15 J. D. Shim and J. Y. Byun, Korean J. Mater. Res., 23, 72 (2013).   DOI
16 A. Yerokhin, X. Nie, A. Leyland, A. Matthews and S. Dowey, Surf. Coat. Technol., 122, 73 (1999).   DOI