DOI QR코드

DOI QR Code

Comparison of Mechanical and Interfacial Properties of Carbon Fiber Reinforced Recycled PET Composites with Thermoforming Temperature and Time

열 성형 온도 및 시간에 따른 탄소섬유 강화 재활용 PET 복합재료의 계면 및 기계적 물성 비교

  • Baek, Yeong-Min (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Center for Creative Human Resource & Convergence Materials, Gyeongsang National University) ;
  • Shin, Pyeong-Su (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Center for Creative Human Resource & Convergence Materials, Gyeongsang National University) ;
  • Kim, Jong-Hyun (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Center for Creative Human Resource & Convergence Materials, Gyeongsang National University) ;
  • Park, Ha-Seung (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Center for Creative Human Resource & Convergence Materials, Gyeongsang National University) ;
  • Kwon, Dong-Jun (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Center for Creative Human Resource & Convergence Materials, Gyeongsang National University) ;
  • Park, Joung-Man (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Center for Creative Human Resource & Convergence Materials, Gyeongsang National University)
  • Received : 2017.05.05
  • Accepted : 2017.06.30
  • Published : 2017.06.30

Abstract

Currently, since carbon fiber reinforced plastics (CFRPs) are lightweight and have excellent physical properties, their demand has increased dramatically. Many works have studied the CFRPs based on recycled thermoplastics. In this study, the applicability of recycled composite was evaluated using recycled polyethylene terephthalate (PET). PET was collected from waste materials used in beverage bottles and processed to produce PET films. Optimal thermoforming temperature and time were analyzed by comparing the mechanical properties with forming temperature and time difference for producing PET films. CF mat and PET film were used to determine the suitable parameters for the optimum thermoforming of CF/PET composites. The mechanical properties of each thermoforming condition were verified by bending test. The degree of impregnation of the PET film into the CF mat was evaluated by cross-sectional photographs, whereas the interfacial properties were evaluated by interlaminar shear strength (ILSS). Ultimately, it was confirmed that the thermoforming condition for forming the CF/recycled PET composites yielding the optimal mechanical and interfacial properties was at $270^{\circ}C$ for 5 minutes.

탄소섬유 강화 복합재료는 가볍고, 우수한 물성을 가지고 있기 때문에 그 수요는 급격하게 증가되고 있다. 그에 따라, 탄소섬유 강화 복합재료의 기지로 재활용이 가능한 열가소성 수지를 사용한 복합재료 연구를 많이 진행하고 있다. 본 연구에서는 재활용 PET를 이용하여 재활용 복합재료에 대한 활용성 평가를 하였다. PET는 음료수 병으로 활용되는 폐기물을 수집하여 PET 필름을 제조하는 과정을 거쳤으며, PET 필름을 제조하기 위한 성형 온도와 시간의 차이에 따른 기계적 물성을 비교하여 최적의 성형온도와 시간을 분석하였다. 이를 바탕으로 재활용 PET 필름과 탄소섬유 매트를 이용하여 CF/PET 복합재료를 최적으로 성형하기 위한 변수를 관찰하였다. 성형 조건에 따른 기계적 물성을 굴곡시험으로 확인하였고, PET 필름이 탄소섬유 매트 내에 함침 되는 정도를 단면 사진으로, 그리고 계면 성질을 층간전단강도로 평가하였다. 궁극적으로 최적의 기계적 물성을 가지는 CF/PET 복합재료를 성형하기 위한 성형 조건이 $270^{\circ}C$와 5분임을 확인했다.

Keywords

References

  1. Luigi, S., Davi, S.V., Marco, D., Fabrizio S., and Jacopo, T., "Effect of Temperature on Static and Low Velocity Impact Properties of Thermoplastic Composites," Composites : Part B, Vol. 113, 2017, pp. 110-110.
  2. Vaidya, U.K., and Chawla, K.K., "Processing of Fibre Reinforced Thermoplastic Composites," International Materials Reviews, Vol. 53, 2008, pp. 185-218. https://doi.org/10.1179/174328008X325223
  3. Bo, X., Sha, Y., Yang, W., Hongfu, L., Boming, Z., and Robert, O. R., "Long-fiber Reinforced Thermoplastic Composite Lattice Structures: Fabrication and Properties," Composites : Part A, Vol. 97, 2017, pp. 41-50. https://doi.org/10.1016/j.compositesa.2017.03.002
  4. Cristina, C., Mihaela C., and Anca D., "Effect of PET Functionalization in Composites of Rubber-PET-HDPE Type," Arabian Journal of Chemistry, Vol. 10, 2017, pp. 300-312. https://doi.org/10.1016/j.arabjc.2015.10.005
  5. Mancini, S.D., and Zanin, M., "Recyclability of PET from Virgin Resin," Materials Research, Vol. 2, 1999, No. 1, 33-38. https://doi.org/10.1590/S1516-14391999000100006
  6. Rahmani, E., Dehestani, M., Beygi, M.H.A., Allahyari, H., and Nikbin, I.M., "On the Mechanical Properties of Concrete Containing Waste PET Particles," Construction and Building Materials, Vol. 47, 2013, pp. 1302-1308. https://doi.org/10.1016/j.conbuildmat.2013.06.041
  7. Nino, D., Ljerka, K.K., Anita, P.S., and Zlata, H.M., "Analysis of Recycled PET Bottles Products by Pyrolysis-gas Chromatography," Polymer Degradation and Stability, Vol. 98, 2013, pp. 972-979. https://doi.org/10.1016/j.polymdegradstab.2013.02.013
  8. Dora, F., "Use of Recycled Waste Pet Bottles Fibers for the Reinforcement of Concrete," Composite Structures, Vol. 96, 2013, pp. 396-404. https://doi.org/10.1016/j.compstruct.2012.09.019
  9. Foti, D., "Use of Recycled Waste PET Bottles Fibers for the Reinforcement of Concrete," Composite Structures, Vol. 96, 2013, pp. 396-404. https://doi.org/10.1016/j.compstruct.2012.09.019
  10. Nonato, R.C., and Bonse, B.C., "A Study of PP/PET Composites: Factorial Design, Mechanical and Thermal Properties," Polymer Testing, Vol. 56, 2016, pp. 167-173. https://doi.org/10.1016/j.polymertesting.2016.10.005
  11. Kim, S.H., and Park, C.H., "Direct Impregnation of Thermoplastic Melt into Flax Textile Reinforcement for Semi-structural Composite Parts," Industrial Crops and Products, Vol. 95, 2017, pp. 651-669. https://doi.org/10.1016/j.indcrop.2016.11.034
  12. Zailuddin, N.L.I., and Husseinsyah, S., "Tensile Properties and Morphology of Oil Palm Empty Fruit Bunch Regenerated Cellulose Biocomposite Films," Procedia Chemistry, Vol. 19, 2016, pp. 366-372. https://doi.org/10.1016/j.proche.2016.03.025
  13. Negoro, T., Thodsaratpreeyakul, W., Takada, Y., Thumsorn, S., Inoya, H., and Hamada, H., "Role of Crystallinity on Moisture Absorption and Mechanical Performance of Recycled PET Compounds," Energy Procedia, Vol. 89, 2016, pp. 323-327. https://doi.org/10.1016/j.egypro.2016.05.042
  14. Dong, C., and Davies, I.J., "Flexural and Tensile Strengths of Unidirectional Hybrid Epoxy Composites Reinforced by S-2 Glass and T700S Carbon Fibres," Materials and Design, Vol. 54, 2014 pp. 955-966. https://doi.org/10.1016/j.matdes.2013.08.087
  15. Baqar, M., Agag, T., Ishida, H., and Qutubuddin, S., "Poly(benzoxazine-co-urethane)s: A New Concept for Phenolic/urethane Copolymers via One-pot Method," Polymer, Vol. 52, 2011, pp. 307-317. https://doi.org/10.1016/j.polymer.2010.11.052

Cited by

  1. Effect of polypropylene-grafted-maleic anhydride content on physical properties of carbon fiber reinforced polypropylene composites vol.2, pp.4, 2017, https://doi.org/10.1088/2631-6331/abd374