• Title/Summary/Keyword: Secondary organic aerosols

Search Result 31, Processing Time 0.035 seconds

Determination of Amino Acids on Wintertime PM2.5 using HPLC-FLD (HPLC-FLD를 이용한 겨울철 PM2.5 중 아미노산 성분 분석)

  • Park, Da-Jeong;Cho, In-Hwan;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.5
    • /
    • pp.482-492
    • /
    • 2015
  • Ground-based measurements were conducted from January 6 to 12 of 2015 for understanding characteristics of nitrogen containing carbonaceous aerosols as 16 amino acids at the Mokpo National University, Korea. The detailed amino acid components such as Cystine ($(SCH_2CH(NH_2)CO_2H)_2$) and Methionine ($C_5H_{11}NO_2S$) and their sources were analyzed by High-Performance Liquid Chromatography with Fluorescence Detection (HPLC-FLD) for behavior of secondary products in particulate matter. In addition, organic carbon (OC) and elemental carbon (EC) based on the carbonaceous thermal distribution (CTD), which provides detailed carbon signature characteristics relative to analytical temperature, and water soluble organic carbon (WSOC) by total organic carbon (TOC) analyzer were used to understand the carbon compound behaviors. The backward trajectories were discussed for originations of carbonaceous aerosols as well. Different airmasses were classified with the amino acids and OC thermal signatures. The results can provide to understand the aging process influenced by the long-range transport from East Sea area.

The Characteristics of Secondary Carbonaceous Species within PM10 and PM2.5 in Seoul and Incheon Area (서울과 인천지역 PM10 과 PM2.5 중 2차생성 탄소성분 추정)

  • Park Jin Soo;Kim Shin Do
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.1
    • /
    • pp.131-140
    • /
    • 2005
  • To investigate secondary carbonaceous species within PM$_{10}$ and PM$_{2.5}$ in Seoul urban Metropolitan Area (SMA), Korea. atmospheric particulate matters samples were collected at two sites of SMA at UOS (The University Of Seoul station) sites and IHU (InHa University of Incheon station) during the period of 4 to 14 January and 12 to 22 May, 11 to 15 August 2004, and their characteristics were qualitatively discussed. during January and May and August of 2004. Daily average mass concentration 0.095 mg/㎥ in PM$_{10}$ and 0.053 mg/㎥ in PM$_{2.5}$ for mass respectively. were observed in SMA. The concentrations of carbonaceous species contributed 18.4% and 16.4% of PM$_{2.5}$ and PM$_{10}$ during the sampling period, respectively, of which OC accounted for 68% and 52% more of the total carbon (TC). OC and EC concentrations and their mass percentages were higher in PM$_{2.5}$ than in PM$_{10}$ which could be attributed to generation process. Organic aerosols would constitute up to 38% of PM$_{2.5}$ based on the evaluation of 1.6 for the ratio of OC to organic particulate. Secondary organic carbon (SOC) were estimated to be more than 13% and up to 68% of total OC based on the minimum OC/EC ratio of 1.06/1.11 using least square method. Comparisons of OC and EC with trace elements. As results of carbonaceous species analysis, the dominant factor in view of fine particle (PM$_{10}$/PM$_{2.5}$) is primary emission source such as mobile, fossil fuel combustion etc. during winter time in SMA. But in summer periods, remarkable fine particle increasing factor was secondary organic carbon dependent to photochemical reaction. reaction.n. reaction.

Chemical Characterization of Water-Soluble Organic Acids in Size-Segregated Particles at a Suburban Site in Saitama, Japan

  • Bao, Linfa;Sakamoto, Kazuhiko
    • Asian Journal of Atmospheric Environment
    • /
    • v.3 no.1
    • /
    • pp.42-51
    • /
    • 2009
  • Saturated n-dicarboxylic acids ($C_2-C_7$, $C_9$), unsaturated dicarboxylic acids (maleic, fumaric, phthalic acid), ketocarboxylic acids (pyruvic, glyoxylic acid), and dicarbonyls (glyoxal, methylglyoxal) were determined in size-segregated samples with a high-volume Andersen air sampler at a suburban site in Saitama, Japan, May 12-17 and July 24-27, 2007 and January 22-31, 2008. The seasonal average concentrations of these detected organic acids were 670 $ng/m^3$, accounting for about 4.4-5.7% (C/C) of water-soluble organic carbon (WSOC) and 2.3-3.6% (C/C) of organic carbon (OC). The most abundant species of dicarboxylic acids was oxalic acid, followed by malonic, phthalic, or succinic acids. Glyoxylic acid and methyglyoxal were most abundant ketocarboxylic acid and dicarbonyl, respectively. Seasonal differences, size-segregated concentrations, and the correlations of these acids with ambient temperatures, oxidants, elemental carbon (EC), OC, WSOC, and ionic components were also discussed in terms of their corresponding sources and possible secondary formation pathways. The results suggested that photochemical reactions contributed more to the formation of particulate organic acids in Saitama suburban areas than did direct emissions from anthropogenic and natural sources. However, direct emissions of vehicles were also important sources of several organic acids in particles, such as phthalic and adipic acids, especially in winter.

Investigation of Chemical Characteristics of $PM_{2.5}$ during Winter in Gwangju (겨울철 광주지역 $PM_{2.5}$의 화학적 특성 조사)

  • Ko, Jae-Min;Bae, Min-Suk;Park, Seung Shik
    • Particle and aerosol research
    • /
    • v.9 no.2
    • /
    • pp.89-102
    • /
    • 2013
  • 24-hr $PM_{2.5}$ samples were collected from January 19 through February 27, 2009 at an urban site of Gwangju and analyzed to determine the concentrations of organic and elemental carbon(OC and EC), water-soluble OC(WSOC), eight ionic species($Na^+$, $NH^{4+}$, $K^+$, $Ca^{2+}$, $Mg^{2+}$, $Cl^-$, ${NO_3}^-$ and ${SO_4}^{2-}$), and 22 elemental species. Haze phenomena was observed during approximately 29%(10 times) of the whole sampling period(35 days), resulting in highly elevated concentrations of $PM_{2.5}$ and its chemical components. An Asian dust event was also observed, during which $PM_{2.5}$ concentration was 64.5 ${\mu}g/m^2$. Crustal materials during Asian dust event contributed 26.6% to the $PM_{2.5}$, while lowest contribution(5.1%) was from the haze events. OC/EC and WSOC/OC ratios were found to be higher during haze days than during other sampling days, reflecting an enhanced secondary organic aerosol production under the haze conditions. For an Asian dust event, enhanced concentrations of OC and secondary inorganic components were also found, suggesting the further atmospheric processing of precursor gases during transport of air mass to the sampling site. Correlations among WSOC, EC, ${NO_3}^-$, ${SO_4}^{2-}$, and primary and secondary OC fractions, which were predicted from EC tracer method, suggests that the observed WSOC could be formed from similar formation processes as those of secondary organic aerosol, ${NO_3}^-$ and ${SO_4}^{2-}$. Results from principal component analysis indicate also that the observed WSOC was strongly associated with formation routes of the secondary organic and inorganic aerosols.

Estimation of the major sources for organic aerosols at the Anmyeon Island GAW station (안면도에서의 초미세먼지 유기성분 주요 영향원 평가)

  • Han, Sanghee;Lee, Ji Yi;Lee, Jongsik;Heo, Jongbae;Jung, Chang Hoon;Kim, Eun-Sill;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.135-144
    • /
    • 2018
  • Based on a two-year measurement data, major sources for the ambient carbonaceous aerosols at the Anmyeon Global Atmosphere Watch (GAW) station were identified by using the Positive Matrix Factorization (PMF) model. The particulate matter less than or equal to $2.5{\mu}m$ in aerodynamic diameter (PM2.5) aerosols were sampled between June 2015 to May 2017 and carbonaceous species including ~80 organic compounds were analyzed. When the number of factors was 5 or 6, the performance evaluation parameters showed the best results, With 6 factor case, the characteristics of transported factors were clearer. The 6 factors were identified with various analyses including chemical characteristics and air parcel movement analysis. The 6 factors with their relative contributions were (1) anthropogenic Secondary Organic Aerosols (SOA) (10.3%), (2) biogenic sources (24.8%), (3) local biomass burning (26.4%), (4) transported biomass burning (7.3%), (5) combustion related sources (12.0%), and (6) transported sources (19.2%). The air parcel movement analysis result and seasonal variation of the contribution of these factors also supported the identification of these factors. Thus, the Anmyeon Island GAW station has been affected by both regional and local sources for the carbonaceous aerosols.

Time Resolved Analysis of Water Soluble Organic Carbon by Aerosol-into-Mist System (분진-미스트 시스템을 이용한 실시간 수용성 유기탄소 분석)

  • Cho, In-Hwan;Park, Da-Jeong;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.6
    • /
    • pp.497-507
    • /
    • 2015
  • Real-time and quantitative measurement of the chemical composition in ambient aerosols represents one of the most challenging problems in the field of atmospheric chemistry. In the present study, time resolved application by Aerosol-into-Mist System (AIMS) following by total organic carbon analyzer (TOC) has been developed. The unique aspect of the combination of these two techniques is to provide quantifiable water soluble organic carbon (WSOC) information of particle-phase organic compounds on timescales of minutes. We also demonstrated that the application of the AIMS method is not limited to water-soluble organic carbon but inorganic ion compounds. By correlating the volume concentrations by optical particle sizer (OPS), water soluble organic carbon can be highly related to the secondary organic products. AIMS-TOC method can be potentially applied to probe the formation and evolution mechanism of a variety of SOA behaviors in ambient air.

Effect of Air Stagnation Conditions on Mass Size Distributions of Water-soluble Aerosol Particles (대기 정체와 수용성 에어로졸 입자의 질량크기분포의 관계)

  • Park, Seungshik;Yu, Geun-Hye
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.3
    • /
    • pp.418-429
    • /
    • 2018
  • Measurements of 24-hr size-segregated ambient particles were made at an urban site of Gwangju under high pressure conditions occurred in the Korean Peninsula late in March 2018. The aim of this study was to understand the effect of air stagnation on mass size distributions and formation pathways of water-soluble organic and inorganic components. During the study period, the $NO_3{^-}$, $SO_4{^{2-}}$, $NH_4{^+}$, water-soluble organic carbon (WSOC), and humic-like substances(HULIS) exhibited mostly bi-modal size distributions peaking at 1.0 and $6.2{\mu}m$, with predominant droplet modes. In particular, outstanding droplet mode size distributions were observed on March 25 when a severe haze occurred due to stable air conditions and long range transport of aerosol particles from northeastern regions of China. Air stagnation conditions and high relative humidity during the study period resulted in accumulation of primary aerosol particles from local emission sources and enhanced formation of secondary ionic and organic aerosols through aqueous-phase oxidations of $SO_2$, $NO_2$, $NH_3$, and volatile organic compounds, leading to their dominant droplet mode size distributions at particle size of $1.0{\mu}m$. From the size distribution of $K^+$ in accumulation mode, it can be inferred that in addition to the secondary organic aerosol formations, accumulation mode WSOC and HULIS could be partly attributed to biomass burning emissions.

Numerical and Experimental Analyses Examining Ozone and Limonene Distributions in Test Chamber with Various Turbulent Flow Fields

  • ITO, Kazuhide
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.3
    • /
    • pp.89-99
    • /
    • 2008
  • Indoor ozone has received attention because of its well-documented adverse effects on health. In addition to the inherently harmful effects of ozone, it can also initiate a series of reactions that generate potentially irritating oxidation products, including free radicals, aldehydes, organic acids and secondary organic aerosols (SOA). Especially, ozone reacts actively with terpene. The overarching goal of this work was to better understand ozone and terpene distributions within rooms. Towards this end, the paper has two parts. The first describes the development of a cylindrical test chamber that can be used to obtain the second order rate constant $(k_b)$ for the bi-molecular chemical reaction of ozone and terpene in the air phase. The second consists of model room experiments coupled with Computational Fluid Dynamics (CFD) analysis of the experimental scenarios to obtain ozone and terpene distributions in various turbulent flow fields. The results of CFD predictions were in reasonable agreement with the experimental measurements.

Photooxidation Reaction of Toluene/$NO_x$ Mixture in an Indoor Smog Chamber (실내 스모그 챔버를 이용한 톨루엔/$NO_x$ 광화학 반응 현상의 관찰)

  • 이영미;이승복;배귀남;김민철;문길주;박주연;김용표
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.167-168
    • /
    • 2003
  • 광화학 스모그는 대기 중으로 배출된 일차 오염물질인 /NO$_{x}$와 휘발성 유기화합물(volatile organic compounds)이 햇빛에 의해 반응하여 오존과 그외 다른 광화학 물질들을(photochemical oxidants) 생성시키는 현상이다. 서울의 경우 이런 VOCs 중에서 가장 많은 양을 차지하는 톨루엔은 광화학 반응을 통해 이차 유기 에어로졸(secondary organic aerosols)을 생성하는 능력이 매우 높은 방향족 화합물이다(Na and Kim, 2001). 지금까지 톨루엔의 이차 유기 에어로졸 생성에 관한 연구와 다른 방향족 탄화수소에 관한 연구가 스모그 챔버 실험을 통해 많이 이루어져 왔다. (중략)

  • PDF

Promises and Risks of Unsaturated Volatile Organic Compounds: Limonene, Pinene, and Isoprene

  • Jin, Kyong-Suk;Jun, Mi-Ra;Park, Min-Ji;Ok, Seon;Jeong, Jae-Han;Kang, Hye-Sook;Jo, Wan-Keun;Lim, Ho-Jin;Jeong, Woo-Sik
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.447-456
    • /
    • 2008
  • Limonene, pinene, and isoprene are abundant and ubiquitous volatile organic compounds (VOCs) which are found in various natural products and also produced from various manufacture processes. Limonene and pinene are major components of food additives and household products for enrichment of good flavors and elimination of malodors, and isoprene is a basal motif of monoterpenes such as limonene and pinene. They have shown many beneficial effects such as chemopreventive, chemotherapeutic, and antioxidant activities. Upon certain conditions, however, adverse effects of these compounds on human health have also been reported. Although they do not seem to have acute and severe toxicity to human, they can easily generate secondary organic aerosols (SOAs) when they react with oxygen and/or ozone, which have shown certain toxic effects on experimental animal models as well as on humans. Numerous household and scented products containing limonene, pinene, and isoprene are widely used in these days. However, biological consequences upon exposure to these products are largely unknown. The aim of this review is to summarize and analyze the current understanding on the biological effects of VOCs, in particular limonene, pinene, and isoprene, as well as their SOAs.