• Title/Summary/Keyword: Secondary batteries

Search Result 384, Processing Time 0.026 seconds

Synthesis and Characterization of Tin-Pyrolyzed Carbon Composites as Anode Material for Lithium Ion Secondary Batteries (리튬이온이차전지 음극활물질로써 주석을 첨가한 열분해탄소의 합성과 특성평가)

  • Hwang, Yun-Ju;Park, Sang-Ho;Kim, Ae-Rhan;Jisha, M.R.;Christy, Maria;Suh, Eun-Kyung;Nahm, Kee-Suk
    • Journal of Energy Engineering
    • /
    • v.19 no.1
    • /
    • pp.16-20
    • /
    • 2010
  • In present work, tin-carbon mixtures by using carbon from pyrolyzed coffee seeds were synthesized. Synthesis methods includes simple mixing and chemical mixing. X-ray diffraction pattern indicated carbon and tin mixture peaks and scanning electron microscope images showed particles size of $12{\sim}85\;{\mu}m$ and shape. Charge discharge test were carried out. Tin-carbon mixture by chemical mixing indicated higher discharge capacity of 191 mAh/g than commercial carbon black(105 mAh/g) for 15cycles. Tin-carbon mixture by simple mixing indicated similar performance to carbon black.

The Preparation and Electrochemical Properties of $MnO_2$ Cathode for Lithium Rechargeable Battery (리튬 전지용 $MnO_2$ Cathode의 제조 및 전기화학적 특성)

  • Yu, Y.H.;Kim, Y.J.;Park, J.K.;Seo, B.W.;Jeong, I.S.;Kim, J.S.;Park, B.K.;Gu, H.B.;Moon, S.I.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1682-1684
    • /
    • 1996
  • Recently, because diffusion of cordless machine and smart card and so on, and concern of unpolluted materials, one are concerned with Li secondary batteries. Li secondary batteries have high voltage, high energy density and high power density, and heavy metal pollution problems are little. Mn is low price and is distributed much quantity. Therefore, we investigated $MnO_2$. In this study, we worked the electrochemical properties and charge/discharge characteristics of $MnO_2/Li$ cells. In results, the more heating temperature is high, the more ${\gamma}-phase$ varied ${\beta}-phase$, and when $MnO_2$ is heated at $320^{\circ}C$ and super-s-black 20wt% is mixed, characteristics are the best.

  • PDF

Electrochemical properties and Estimation of $LiMnO_{2}$ Active Material Synthesis for Secondary Batteries (2차 전지용 $LiMnO_{2}$ 활물질 합성의 전기화학적 특성과 평가)

  • Wee, Sung-Dong;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.210-215
    • /
    • 2002
  • This thesis is contents on the crystal grown by the solide phase method at $925^{\circ}C$ with orthorhombic structure that $LiMnO_{2}$ active material synthesised with precurse $Mn_{2}O_{3}$ and $LiOH.H_{2}O$ material to get three voltage level. The porosity analysis of the grown crystal in secondary batteries $LiMnO_{2}$ thin film is $1.323E+02\AA$ of the average pore diameter of powder particles and its structure to be taken the pore diameter was prepared. Adding voltage area to get properties of charge and discharge of which experiment result of $LiMnO_{2}$ thin film area 2.2V~4.3V, current and scan speed were 0.1mAh/g and $0.2mV/cm^{2}$ respectively, and properties of the charge and discharge to be got optimum experiment condition parameter and density rate of Li for analyze that unit discharge capacity with metal properties is 87mAh/g was 96.9[ppm] at 670.784[nm] wavelength, and density rate of Mn analyzed 837[ppm] at 257.610[nm]. It can be estimated the quality of thin film that wrong cell reject from the bottle of electrolyte. The results of SEM and XRD were the same that of original researchers.

  • PDF

Fabrication and Characterization of Pitch/Cokes/Natural Graphite Composites as Anode Materials for High-Power Lithium Secondary Batteries (고출력 리튬이온 이차전지 음극재용 피치/코크스/천연흑연 복합재의 제조 및 전기화학적 특성평가)

  • Ko, Hyo Joon;Lim, Yun-Soo;Kim, Myung-Soo
    • Korean Journal of Materials Research
    • /
    • v.25 no.6
    • /
    • pp.279-287
    • /
    • 2015
  • In order to prepare anode materials for high power lithium ion secondary batteries, carbon composites were fabricated with a mixture of petroleum pitch and coke (PC) and a mixture of petroleum pitch, coke, and natural graphite (PC-NG). Although natural graphite has a good reversible capacity, it has disadvaantages of a sharp decrease in capacity during high rate charging and potential plateaus. This may cause difficulties in perceiving the capacity variations as a function of electrical potential. The coke anodes have advantages without potential plateaus and a high rate capability, but they have a low reversible capacity. With PC anode composites, the petroleum pitch/cokes mixture at 1:4 with heat treatment at $1000^{\circ}C$ (PC14-1000C) showed relatively high electrochemical properties. With PC-NG anode composites, the proper graphite contents were determined at 10~30 wt.%. The composites with a given content of natural graphite and remaining content of various petroleum pitch/cokes mixtures at 1:4~4:1 mass ratios were heated at $800{\sim}1200^{\circ}C$. By increasing the content of petroleum pitch, reversible capacity increased, but a high rate capability decreased. For a given composition of carbonaceous composite, the discharge rate capability improved but the reversible capacity decreased with an increase in heat treatment temperature. The carbonaceous composites fabricated with a mixture of 30 wt.% natural graphite and 70 wt.% petroleum pitch/cokes mixture at 1:4 mass ratio and heat treated at $1000^{\circ}C$ showed relatively high electrochemical properties, of which the reversible capacity, initial efficiency, discharge rate capability (retention of discharge capacity in 10 C/0.2 C), and charge capacity at 5 C were 330 mAh/g, 79 %, 80 %, and 60 mAh/g, respectively.

Charge-discharge Properties by Cut-off Voltage Changes of Li(${Mn_{1-\delta}}{M_{\delta}$)$_2$$O_4$ and ${LiMn_2}{O_4}$in Li-ion Secondary Batteries (코발트와 니켈로 치환한 리튬이온 이차전지 Cathode, Li(${Mn_{1-\delta}}{M_{\delta}$)$_2$$O_4$${LiMn_2}{O_4}$의 Cut-off 전압 변화에 따른 충방전 특성)

  • 유광수;박재홍;이승원;조병원
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.5
    • /
    • pp.424-430
    • /
    • 2001
  • Cut-off 전압 변화에 따른 충방전 특성을 알아보기 위하여 Mn을 다른 전이 금속이 Co와 Ni로 소량 치환시킨 Li(M $n_{1-{\delta}}$ $n_{\delta}$)$_2$ $O_4$(M=Ni, Co, $\delta$=0, 0.05, 0.1, 0.2)를 고상 반응법으로 80$0^{\circ}C$에서 48시간 동안 유지하여 합성하였다. 충방전의 cut-off 전압은 2.5~4.4V, 3.0~4.5V, 3.5~4.5V, 3.5V~4.7V의 네 가지 전압범위고 하였다. 충방전 실험결과, Li(M $n_{1-{\delta}}$ $n_{\delta}$)$_2$ $O_4$의 용량은 각각 Co와 Ni의 $\delta$=0.1에서 최대를 보였다. Co 치환 조성 재료와 순물질 모두에서 최대의 용량을 보인 cut-off 전압대는 3.5~4.5V 이었는데 이때의 Li(M $n_{0.9}$ $Co_{0.1}$)$_2$ $O_4$와 LiM $n_2$ $O_4$의 초기 충전용량과 초기 방전용량은 각각 118, 119mAh/g과 114, 104mAh/g 이었다. 또한 모든 cut-off 전압대에서 Li(M $n_{0.9}$ $Co_{0.1}$)$_2$ $O_4$는 순수한 LiM $n_2$ $O_4$보다 더 높은 용량과 우수한 싸이클 성능을 보였으며 그 결과는 밀착형 전지구성에서도 일치하였다.하였다.

  • PDF

The Study on Prediction of Oxidative Decomposition Potential by Comparison between Simulation and Electrochemical Methods to Develop the Binder for High-voltage Lithium-ion Batteries (고전압용 리튬이차전지 바인더 개발을 위한 시뮬레이션 및 전기화학 평가 비교를 통한 산화분해전압 예측 연구)

  • Yu, Jee Min;Kashaev, Alexey;Lee, Maeng-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.177-183
    • /
    • 2013
  • As the development of available binder in the harsh conditions is needed, we propose the proper binder for high-voltage lithium-ion secondary batteries based on the quantum chemistry modeling. The optimized structures, HOMO (Highest Occupied Molecular Orbital) energies and ionization potentials of 4 binders, which were considered from monomer to tetramer, were investigated by the semi-empirical and DFT (Density Functional Theory) calculations. The results show that the ionization potential values by calculation tend to be close to the oxidation potentials from the measurement of linear sweep voltametry (LSV). The order of oxidative resistance from high value to low value is following: poly(hexafluropropylene), poly(vinylidene fluoride), poly(methyl acrylate) and poly(acryl amide). Also these results correspond with the experimental values. Thus, we find the reason why HOMO (Highest Occupied Molecular Orbital) energy of PHFP has the highest value than other binders by analysis of HOMO orbital structures.

A Study on the Separation of Cadmium from Waste Ni-Cd Secondary Batteries by Ion Substitution Reaction (이온치환 반응을 이용한 니켈-카드뮴 폐이차전지에서 카드뮴의 분리에 대한 연구)

  • Kim, Dae-Weon;Park, Il-Jeong;Ahn, Nak-Kyoon;Jeong, Hang-Chul;Jung, Soo-Hoon;Choi, Joong-Yup;Yang, Dae-Hoon
    • Resources Recycling
    • /
    • v.27 no.4
    • /
    • pp.36-43
    • /
    • 2018
  • In order to recycle waste nickel-cadmium batteries, cadmium was selectively removed by ion substitution reaction so that cadmium and nickel could be separated efficiently. The electrode powder obtained by crushing the electrode in the waste nickelcadmium battery was leached with sulfuric acid. The cadmium in the nickel-cadmium solution was precipitated with cadmium sulfide by the addition of sodium sulfide. Ion substitution experiments were carried out under various conditions. At the optimum condition with pH = -0.1 and $Na_2S/Cd=2.3$ at room temperature, the residual Cd in the solution was about 100 ppm, and most of it was precipitated with CdS.

Preparation and Electrochemical Performances Comparison of Carbon and Hydrogel Electrocatalysts for Seawater Battery (해수 전지용 탄소계 촉매와 Hydrogel 촉매의 제조 및 이들의 전기화학적 특성 비교)

  • Kim, Kyoungho;Na, Young Soo;Lee, Man Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.4
    • /
    • pp.61-67
    • /
    • 2018
  • As emerging the new electric devices, the commercial lithium ion batteries have faced with various challenges. In this regard, many efforts to solve challenges have been tried. In order to solve the above problems in terms of development of a new secondary battery, we successfully demonstrated the two electrocatalysts, such as MCWB and PPY hydrogel, PPY hydrogel and MCWB showed typical H3-type BET isotherm, indicating that micro- and mesopores existed. Especially, in terms of voltage efficiency at the first cycle, PPY hydrogel was higher than that of MCWB, but lower than that of PtC. More interestingly, the PPY hygrogel based seawater battery exhibited charge-discharge reversibility during 20 cycles, and the voltage efficiencies ranged from 70.32 % to 77.35 % in cyclic performance test.

Three-dimensional porous films consisting of copper@cobalt oxide core-shell dendrites for high-capacity lithium secondary batteries (리튬이차전지용 고용량 음극을 위한 구리@코발트산화물 코어-쉘 수지상 기반 3차원 다공성 박막)

  • So-Young Joo;Yunju Choi;Woo-Sung Choi;Heon-Cheol Shin
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.1
    • /
    • pp.104-114
    • /
    • 2023
  • Three dimensional (3D) porous structures consisting of Cu@CoO core-shell-type nano-dendrites were synthesized and tested as the anode materials in lithium secondary batteries. For this purpose, first, the 3D porous films comprising Cu@Co core-shell-type nano-dendrites with various thicknesses were fabricated through the electrochemical co-deposition of Cu and Co. Then the Co shells were selectively anodized to form Co hydroxides, which was finally dehydrated to get Cu@CoO nanodendrites. The resulting electrodes exhibited very high reversible specific capacity almost 1.4~2.4 times the theoretical capacity of commercial graphite, and excellent capacity retention (~90%@50th cycle) as compared with those of the existing transition metal oxides. From the analysis of the cumulative irreversible capacity and morphology change during charge/discharge cycling, it proved that the excellent capacity retention was attributed to the unique structural feature of our core-shell structure where only the thin CoO shell participates in the lithium storage. In addition, our electrodes showed a superb rate performance (70.5%@10.8 C-rate), most likely due to the open porous structure of 3D films, large surface area thanks to the dendritic structure, and fast electron transport through Cu core network.

Study on Fiber Laser Welding Characteristics of Copper for Secondary Battery Material (이차전지 소재용 구리의 파이버 레이저 용접 특성에 관한 연구)

  • Park, Eun Kyeong;Lee, Ka Ram;Lee, Hyun Jung;Yoo, Young Tae
    • Laser Solutions
    • /
    • v.17 no.3
    • /
    • pp.1-9
    • /
    • 2014
  • In this study, we analyzed fiber laser welding for the pure copper thin plates in a series of secondary lithium-ion batteries; and performed the experiment for the purpose of the preceding study to replace bolt joints method the with the laser welding method. We have changed the peak power of the laser from 5 to 6kW, the pulse duration by 4, 6, 8, and 10ms, the frequency by 10, 12, 16, and 25Hz, and the focal position by -3, 0, and +3. As a result, when the focal position is at +3, the peak power is 5kW, and the pulse duration and the Frequency are 4ms and 25Hz, respectively, we obtain 2.1 and 2.5 times better tensional strengths, respectively, than the highest values of tensional strengths obtained with the focal positions at 0 and -3.

  • PDF