Browse > Article
http://dx.doi.org/10.3740/MRSK.2015.25.6.279

Fabrication and Characterization of Pitch/Cokes/Natural Graphite Composites as Anode Materials for High-Power Lithium Secondary Batteries  

Ko, Hyo Joon (Dept. of Materials Science and Engineering, Myongji University)
Lim, Yun-Soo (Dept. of Materials Science and Engineering, Myongji University)
Kim, Myung-Soo (Dept. of Chemical Engineering, Myongji University)
Publication Information
Korean Journal of Materials Research / v.25, no.6, 2015 , pp. 279-287 More about this Journal
Abstract
In order to prepare anode materials for high power lithium ion secondary batteries, carbon composites were fabricated with a mixture of petroleum pitch and coke (PC) and a mixture of petroleum pitch, coke, and natural graphite (PC-NG). Although natural graphite has a good reversible capacity, it has disadvaantages of a sharp decrease in capacity during high rate charging and potential plateaus. This may cause difficulties in perceiving the capacity variations as a function of electrical potential. The coke anodes have advantages without potential plateaus and a high rate capability, but they have a low reversible capacity. With PC anode composites, the petroleum pitch/cokes mixture at 1:4 with heat treatment at $1000^{\circ}C$ (PC14-1000C) showed relatively high electrochemical properties. With PC-NG anode composites, the proper graphite contents were determined at 10~30 wt.%. The composites with a given content of natural graphite and remaining content of various petroleum pitch/cokes mixtures at 1:4~4:1 mass ratios were heated at $800{\sim}1200^{\circ}C$. By increasing the content of petroleum pitch, reversible capacity increased, but a high rate capability decreased. For a given composition of carbonaceous composite, the discharge rate capability improved but the reversible capacity decreased with an increase in heat treatment temperature. The carbonaceous composites fabricated with a mixture of 30 wt.% natural graphite and 70 wt.% petroleum pitch/cokes mixture at 1:4 mass ratio and heat treated at $1000^{\circ}C$ showed relatively high electrochemical properties, of which the reversible capacity, initial efficiency, discharge rate capability (retention of discharge capacity in 10 C/0.2 C), and charge capacity at 5 C were 330 mAh/g, 79 %, 80 %, and 60 mAh/g, respectively.
Keywords
lithium-ion battery; anode materials; natural graphite; petroleum pitch; cokes;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 M. Shao, J. Power Sources, 270, 475 (2014).   DOI   ScienceOn
2 Q. Cheng, R. Yuge, K. Nakahara, N. Tamura and S. Miyamoto, J. Power Sources, 284, 258 (2015).   DOI   ScienceOn
3 A. Kraytsberg and Y. Ein-Eli, Adv. Energy Mater., 2(8), 922 (2012).   DOI   ScienceOn
4 M. Endo, C. Kim, K. Nishimura, T. Fujino and K. Miyashita, Carbon, 38(2), 183 (2000).   DOI   ScienceOn
5 G. A Nazri and G. Pistoia, Lithium Batteries Sci. Technol., p.112, Kluwer, Netherlands (2004).
6 W. Guoping, Z. Bolan, Y. Min, X. Xiaoluo, Q. Meizheng and Y. Zuolong, Solid State Ionics, 176(9-10), 905 (2012).   DOI
7 T. Plack, V. Siozios, R. Schmitz, S. F. Lux, P. Bieker, C. Colle, H. W. Meyer, S. Passerini and M. Winter, J. Power Sources, 200, 83 (2012).   DOI   ScienceOn
8 D. Aurbach, B. Markovsky, I. Weissman, E. Levi and Y. Ein-Eli, Electrochim. Acta, 45(1-2), 67 (1999).   DOI   ScienceOn
9 J. H. Ryu, E. Y. Oh and S. M. Oh, J. Korean Electrochem. Soc., 7(1), 32 (2004).   DOI   ScienceOn
10 H. Sun, X. He, J. Ren, J. Li, C. Jiang and C. Wan, Electrochim. Acta, 52(13), 4312 (2007).   DOI   ScienceOn
11 K. Y. Sheem, E. H. Song and Y. H. Lee, Electrochim. Acta, 78, 223 (2012).   DOI   ScienceOn
12 E. Buiel and J. R. Dahn, Electrochim. Acta, 45(1-2), 121 (1999).   DOI   ScienceOn
13 Y. Sato, K. Tanuma, T. Takayama, K. Kobayakawa, T. Kawai and A. Yokoyama, J. Power Sources, 97-98, 165 (2001).   DOI   ScienceOn
14 T. Nakajima, S. Shibata, K. Naga, Y. Ohzawa, A. Tressaud, E. Durand, H. Groult and F. Warmont, J. Power Sources, 168(1), 265 (2007).   DOI   ScienceOn
15 T. Takamura, K. Sumiya, J. Suzuki, C. Yamada and K. Sekine, J. Power Sources, 81-82, 368 (1999).   DOI   ScienceOn
16 Y. Wu, C. Jiang, C. Wan and E. Tsuchida, J. Mater. Chem., 11(4), 1233 (2001)   DOI   ScienceOn
17 Y. Wu, C. Jiang, C. Wan and R. Holze, J. Power Sources, 111(2), 329 (2002).   DOI   ScienceOn
18 J. Drofenik, M. Gaberscek, R. Dominko, M. Bele and S. Pejovnik, J. Power Sources, 94(1), 97 (2001).   DOI   ScienceOn
19 M. Bele, M. Gaberscek, R. Dominko, J. Drofenik, K. Zupan, P. Komac, K. Kocevar, I. Musevic and S. Pejovnik, Carbon, 40(7), 1117 (2002).   DOI   ScienceOn
20 M. Gaberscek, M. Bele, J. Drofenik, R. Dominko and S. Pejovnik, J. Power Sources, 97-98, 67 (2001).   DOI   ScienceOn
21 L. Yu, K. J. Kim, D. Y. Park, M. S. Kim, K. I. Kim and Y. S. Lim, Carbon Lett., 9(3), 210 (2008).   DOI   ScienceOn
22 J. S. Kim, W. Y. Yoon, K. S. Yoo, G. S. Park, C. W. Lee, Y. Murakami and D. Shindo, J. Power Sources, 104(2), 175 (2002).   DOI   ScienceOn
23 Y. Sato, Y. Kikuchi, T. Nakano, G. Okuno, K. Kobayakawa, T. Kawai and A. Yokoyama, J. Power Sources, 81-82, 182 (1999).   DOI   ScienceOn
24 D. Y. Park, L. Yu, Y. S. Lim and M. S. Kim, J. Ind. Eng. Chem., 15(4), 588 (2009).   DOI   ScienceOn
25 T. Zheng, W. R. Mckinnon and J. R. Dahn, J. Electrochem. Soc., 143, 2137 (1996).   DOI
26 P. Papanek, M. Radosavljevic and J. E. Fischer, Chem. Mater., 8(7), 1519 (1996).   DOI   ScienceOn
27 T. Zheng and J. R. Dahn, J. Power sources, 68, 201 (1997).   DOI   ScienceOn
28 Y. Liu, J. S. Xue, T. Zheng and J. R. Dahn, Carbon, 34(2), 193 (1996).   DOI   ScienceOn