Browse > Article
http://dx.doi.org/10.5229/JKES.2013.16.3.177

The Study on Prediction of Oxidative Decomposition Potential by Comparison between Simulation and Electrochemical Methods to Develop the Binder for High-voltage Lithium-ion Batteries  

Yu, Jee Min (R&D center, Samsung SDI Co., Ltd.)
Kashaev, Alexey (R&D center, Samsung SDI Co., Ltd.)
Lee, Maeng-Eun (R&D center, Samsung SDI Co., Ltd.)
Publication Information
Journal of the Korean Electrochemical Society / v.16, no.3, 2013 , pp. 177-183 More about this Journal
Abstract
As the development of available binder in the harsh conditions is needed, we propose the proper binder for high-voltage lithium-ion secondary batteries based on the quantum chemistry modeling. The optimized structures, HOMO (Highest Occupied Molecular Orbital) energies and ionization potentials of 4 binders, which were considered from monomer to tetramer, were investigated by the semi-empirical and DFT (Density Functional Theory) calculations. The results show that the ionization potential values by calculation tend to be close to the oxidation potentials from the measurement of linear sweep voltametry (LSV). The order of oxidative resistance from high value to low value is following: poly(hexafluropropylene), poly(vinylidene fluoride), poly(methyl acrylate) and poly(acryl amide). Also these results correspond with the experimental values. Thus, we find the reason why HOMO (Highest Occupied Molecular Orbital) energy of PHFP has the highest value than other binders by analysis of HOMO orbital structures.
Keywords
Lithium ion secondary battery; Binder; HOMO; Ionization potential; Simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Wang, J. Yang, Y. NuLi, J. Wang, 'Highly promoted electrochemical performance of 5 V $LiCoPO_{4}$ cathode material by addition of vanadium' J. Power Sources, 195, 6884 (2010).   DOI   ScienceOn
2 M. Wachtler, M. Winter, J. O. Besenhard, 'Anodic materials for rechargeable Li-batteries' J. Power Sources, 105, 151 (2002).   DOI   ScienceOn
3 Z. Chen, V. Chevrier, L. Christensen, J. R. Dahn, 'Design of Amorphous Alloy Electrodes for Li-Ion Batteries' Electrochem. Solid-State Lett., 7, A310 (2004).   DOI   ScienceOn
4 J. Hassoun, S. Panero, P. Simon, P. L. Taberna, B. Scrosati, 'High-Rate, Long-Life Ni-Sn Nanostructured Electrodes for Lithium-Ion Batteries' Adv. Mater., 19, 1632 (2007).   DOI   ScienceOn
5 K. Xu, C. A. Angell, 'High Anodic Stability of a New Electrolyte Solvent: Unsymmetric Noncyclic Aliphatic Sulfone' J. Electrochem. Soc., 145, L70 (1998).   DOI
6 X. Sun, C. A. Angell, 'Doped sulfone electrolytes for high voltage Li-ion cell applications' Electrochem. Commun., 11, 1418 (2009).   DOI   ScienceOn
7 Z. Zhang, L. Hu, H. Wu, W. Weng, M. Koh, P. C. Redfern, L. A. Curtiss, K. Amine, 'Fluorinated electrolytes for 5 V lithium-ion battery chemistry' Energy Environ. Sci., 6, 1806 (2013).   DOI   ScienceOn
8 Z. Chen , L. Christensen , J. Dahn, 'Large volumechange electrodes for Li-ion batteries of amorphous alloy particles held by elastomeric tethers' Electrochem. Commun., 5, 919 (2003).   DOI   ScienceOn
9 박정기 외, "리튬이온 이차전지의 원리 및 응용", 239, 홍릉과학출판사, 서울 (2010).
10 W. Wei, J. Wang, L. Zhou, J. Yang, B. Schumann, Y. NuLi, 'CNT enhanced sulfur composite cathode material for high rate lithium battery' Electrochem. Commun., 13, 399 (2011).   DOI   ScienceOn
11 M. S. Whittingham, 'Lithium Batteries and Cathode Materials' Chem. Rev., 104, 4271 (2004).   DOI   ScienceOn
12 M. Armand, J. M. Tarascon, 'Building Better Batteries' Nature, 451, 652 (2008).   DOI   ScienceOn
13 J. M. Tarascon, M. Armand, 'Why Li Ion Batteries' Nature, 414, 359 (2001).   DOI   ScienceOn
14 M. H. Ryou, D. J. Lee, J. N. Lee, Y. M. Lee, J. K. Park, J. W. Choi, 'Excellent Cycle Life of Lithium-Metal Anodes in Lithium-Ion Batteries with Mussel-Inspired Polydopamine-Coated Separators' Adv. Energy Mater., 2, 645 (2012).   DOI   ScienceOn
15 P. G. Balakshrishnan, R. Ramesh, and T. P. Kumar, 'Safety mechanisms in lithium-ion batteries' J. Power Sources, 155, 401 (2006).   DOI   ScienceOn
16 A. D. Becke, 'Density-functional thermochemistry. III. The role of exact exchange' J. Chem. Phys., 98, 5648. (1993).   DOI   ScienceOn
17 T. Hayes, 'Root cause for failures in Li-ion batteries', 24th International Battery Seminar & Exhibit, Florida (2007).
18 S. R. Stanislav, C. X. Yin, M. R. Gray, J. M. Stryker, S. Gusarov, A. Kovalenko, 'Computational and Experimental Study of the Structure, Binding Preferences, and Spectroscopy of Nickel(II) and Vanadyl Porphyrins in Petroleum' J. Phys. Chem. B., 114, 2180 (2010).   DOI   ScienceOn
19 M. J. Frisch et al., Gaussian, Inc., Wallingford CT (2010).
20 J. P. Perdew, et al., 'Generalized gradient approximation made simple' Phys. Rev. B., 78, 1396 (1997).
21 C. Lee, W. Yang, R. G. Parr, 'Development of the Colle- Salvetti conelation energy formula into a functional of the electron density' Phys. Rev. B., 37, 785. (1988).   DOI   ScienceOn
22 A. J. Bard, L. R. Faulkner, "Electrochemical methods: fundamentals and applications, 2nd ed." Wiley New York (2001).
23 B. Delley, 'From molecules to solids with the DMol3 approach' J. Chem. Phys., 113, 7756 (2000).   DOI   ScienceOn
24 T. M. Bandhauer, S. Garimella, T. F. Fuller, 'A Critical Review of Thermal Issues in Lithium-Ion Batteries' J. Electrochem. Soc., 158, 3, R1 (2011).   DOI   ScienceOn
25 M. H. Ryou, J. Kim, I. Lee, S. Kim, Y. K. Jeong, S. Hong, J. H. Ryu, T. S. Kim, J. K. Park, H. Lee, J. W. Choi, 'Mussel-Inspired Adhesive Binders for High- Performance Silicon Nanoparticle Anodes in Lithium-Ion Batteries' Adv. Mater., 25, 1571 (2013).   DOI   ScienceOn
26 A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C. F. Huebner, T. F. Fuller, I. Luzinov, G. Yushin, 'Toward Efficient Binders for Li-Ion Battery Si- Based Anodes: Polyacrylic Acid' ACS Appl. Mater. Interfaces, 2, 3004 (2010).   DOI   ScienceOn
27 Z. Chen, L. Christensen, J. R. Dahn, 'Comparison of PVDF and PVDF-TFE-P as Binders for Electrode Materials Showing Large Volume Changes in Lithium- Ion Batteries' J. Electrochem. Soc., 150, 8, A1073 (2003).   DOI   ScienceOn
28 J. Chen, J. Liu, Y. Qi, T. Sun, X. Li, 'Unveiling the Roles of Binder in the Mechanical Integrity of Electrodes for Lithium-Ion Batteries' J. Electrochem. Soc., 160, 9, A1502 (2013).   DOI   ScienceOn
29 B. Delley, 'DMol3 DFT studies: from molecules and molecular environments to surfaces and solids', Comput. Mater. Sci., 17, 122 (2000).   DOI   ScienceOn
30 B. Delley, 'An all-electron numerical method for solving the local density functional for polyatomic molecules' J. Chem. Phys., 92, 508 (1990).   DOI
31 B. Bernd, U. W. Grummt, 'Semiempirical Calculations of First-Order Hyperpolarizabilities: Testingthe Performance of Different Methods in Comparison to Experiment' J. Phys. Chem. B., 102, 664 (1998).   DOI   ScienceOn
32 J. E. Alliott, Y. Shibuta, 'A semi-empirical molecular orbital study of freestanding and fullerene-encapsulated Mo nanoclusters' Molecular Simulation, 34, 891 (2008).   DOI   ScienceOn
33 C. Sigala, D. Guyomard, A. Verbaere, Y. Piffard, M. Tournoux, 'Positive electrode materials with high operating voltage for lithium batteries: $LiCr_{y}Mn_{2y}O_{4}$ ($0 \leq y \leq 1$)' Solid State Ionics, 81, 167 (1995).   DOI   ScienceOn
34 H. Kawai, M. Nagata, M. Tabuchi, H. Tukamoto, A. R. West, 'Novel 5 V Spinel Cathode $Li_{2}FeMn_{3}O_{8}$ for Lithium Ion Batteries' Chem. Mater., 10, 3266 (1998).   DOI   ScienceOn