• Title/Summary/Keyword: Second-moment Closure

Search Result 36, Processing Time 0.021 seconds

Stochastic Response of a System with Autoparametric Coupling (자기매계변수 연성을 갖는 응답의 통계적 특성)

  • 조덕상;김영종
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.4
    • /
    • pp.387-394
    • /
    • 2000
  • The nonlinear modal interaction of an autoparametric system under a broadband random excitation is investigated. The specific system examined is an autoparametric vibration absorber with internal resonance, which is typical of many common structural configurations. By means of Gaussian closure scheme the dynamic moment equations explaining the random responses of the system are reduced to a system of autonomous ordinary differential equations of the first and second moments. In view of equilibrium solutions of this system and their stability we examine the system responses. We could not find the destabilizing effect of damping, which was reported in References (18) and (20). The saturation phenomenon, which is well known in deterministic nonlinear system, did not take place lot this system subject to broadband random excitation.

  • PDF

Simulation of Methane Swirl Flame in a Gas Turbine Model Combustor (가스터빈 모사 연소기에서 선회 확산 화염의 연소특성 해석)

  • Joung, Dae-Ro;Huh, Kang-Yul
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.118-125
    • /
    • 2007
  • The firtst-order conditional moment closure (CMC) model is applied to CH4/air swirl diffusion flame in a gas turbine model combustor. The flow and mixing fields are calculated by fast chemistry assumption with SLFM library and a beta function pdf for mixture fraction. RNG k-e model is used to consider the swirl flame in a confined wall. Reacting scalar fields are calculated by elliptic CMC formulation with chemical kinetic mechanism, GRI Mech 3.0. Validation is done against measurement data for mean flow and scalar fields in the model combustor [1]. Results show reasonable agreement with the mean mixture fraction and its variance, while temperature is overpredicted as the level of local extinction increases. The second-order CMC model is needed to consider local extinction with considerable conditional fluctuations near the nozzle.

  • PDF

COMPARISON OF THE TREATMENTS OF TURBULENT HEAT FLUX FOR NATURAL CONVECTION WITH THE ELLIPTIC-BLENDING SECOND-MOMENT CLOSURE (Elliptic Blending Model을 사용하여 자연대류 해석 시 난류열유속 처리법 비교)

  • Choi, Seok-Ki;Kim, Seong-O
    • Journal of computational fluids engineering
    • /
    • v.12 no.2
    • /
    • pp.26-31
    • /
    • 2007
  • A comparative study on the treatment of the turbulent heat flux with the elliptic blending second-moment closure for a natural convection flow is performed. Three cases of different treating the turbulent heat flux are considered. Those are the generalized gradient diffusion hypothesis (GGDH), the algebraic flux model (AFM) and the differential flux model (DFM). The constants in the models are adjusted with a primary emphasis placed on the accuracy of predicting the local Nusselt number. These models are implemented in a computer code specially designed for evaluation of turbulent models. Calculations are performed for a turbulent natural convection in the 1:5 rectangular cavity and the calculated results are compared with the available experimental data. The results show that the three models produce nearly the same accuracy of solutions. These results show that the GGDH, AFM and DFM models for treating the turbulent heat flux are sufficient for this simple shear flow where the shear production is dominant. It is observed that, in the weakly stratified region at the center zone of the cavity, the vertical velocity fluctuation is nearly zero in the GGDH solutions, which shows that the GGDH model may not be suitable for the strongly stratified flow. Thus, further study on the strongly stratified flow should be followed.

Near-Wall Modelling of Turbulent Heat Fluxes by Elliptic Equation (타원방정식에 의한 벽면 부근의 난류열유속 모형화)

  • Shin, Jong-Keun;An, Jeong-Soo;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.526-534
    • /
    • 2004
  • A new second-moment closure model for turbulent heat fluxes is proposed on the basis of the elliptic equation. The new model satisfies the near-wall balance between viscous diffusion, viscous dissipation and temperature-pressure gradient correlation, and also has the characteristics of approaching its respective conventional high Reynolds number model far away from the wall. The predictions of turbulent heat transfer in a channel flow have been carried out with constant wall heat flux and constant wall temperature difference boundary conditions respectively. The velocity field variables are supplied from the DNS data and the differential equations only fur the mean temperature and the scalar flux are solved by the present calculations. The present model is tested by direct comparisons with the DNS to validate the performance of the model predictions. The prediction results show that the behavior of the turbulent heat fluxes in the whole region is well captured by the present model.

Prediction of Combined Forced and Natural Turbulent Convection in a Vertical Plane Channel with an Elliptic-Blending Second Moment Closure (타원-혼합 2차모멘트 모형에 의한 강제와 자연대류가 복합된 수직 평판 난류유동의 예측)

  • Shin, Jong Keun;An, Jeong Soo;Choi, Young Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.11 s.242
    • /
    • pp.1265-1276
    • /
    • 2005
  • The elliptic conceptual second moment models for turbulent heat fluxes, which are proposed on the basis of elliptic-blending and elliptic-relaxation equations, are applied to calculate the combined forced and natural turbulent convection in a vertical plane channel. The models satisfy the near-wall balance between viscous diffusion, viscous dissipation and temperature-pressure gradient correlation, and also have the characteristics of approaching its respective conventional high Reynolds number model far away from the wall. Also the models are closely linked to the elliptic blending model which is used for the prediction of Reynolds stress. In order to calibrate the heat flux models, firstly, the distributions of mean temperature and scala flux in fully developed channel flow with constant wall difference temperature are solved by the present models. The buoyancy effect on the turbulent characteristics including the mean velocity and temperature, the Reynolds stress tensor, and the turbulent heat flux vector are examined. In the opposing flow, the turbulent transport is greatly enhanced with both the Reynolds stresses and the turbulent heat fluxes being remarkably increased; whereas, in the aiding flow, the opposite change is observed. The results of prediction are directly compared to the DNS to assess the performance of the model predictions and show that the behaviors of the turbulent heat transfer in the whole flow region are well captured by the present models.

Modeling of Turbulent Heat Transfer in an Axially Rotating Pipe Flow (축을 중심으로 회전하는 관유동에서 난류열전달의 모형화)

  • Shin, Jong-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.741-753
    • /
    • 2007
  • The elliptic conceptual second moment model for turbulent heat fluxes, which was proposed on the basis of elliptic-relaxation equation, was applied to calculate the turbulent heat transfer in an axially rotating pipe flow. The model was closely linked to the elliptic blending model which was used for the prediction of Reynolds stress. The effects of rotation on the turbulent characteristics including the mean velocity, the Reynolds stress tensor, the mean temperature and the turbulent heat flux vector were examined by the model. The numerical results by the present model were directly compared to the DNS as well as the experimental results to assess the performance of the model predictions and showed that the behaviors of the turbulent heat transfer in the axially rotating pipe flow were satisfactorily captured by the present models.

Stochastic along-wind response of nonlinear structures to quadratic wind pressure

  • Floris, Claudio;de Iseppi, Luca
    • Wind and Structures
    • /
    • v.5 no.5
    • /
    • pp.423-440
    • /
    • 2002
  • The effects of the nonlinear (quadratic) term in wind pressure have been analyzed in many papers with reference to linear structural models. The present paper addresses the problem of the response of nonlinear structures to stochastic nonlinear wind pressure. Adopting a single-degree-of-freedom structural model with polynomial nonlinearity, the solution is obtained by means of the moment equation approach in the context of It$\hat{o}$'s stochastic differential calculus. To do so, wind turbulence is idealized as the output of a linear filter excited by a Gaussian white noise. Response statistical moments are computed for both the equivalent linear system and the actual nonlinear one. In the second case, since the moment equations form an infinite hierarchy, a suitable iterative procedure is used to close it. The numerical analyses regard a Duffing oscillator, and the results compare well with Monte Carlo simulation.

Influence of Internal Resonance on Responses of a Spring-Pendulum System under Broad Band Random Excitation (광대역 불규칙 가진력을 받는 탄성진자계의 내부공진효과)

  • 이원경;조덕상
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.399-407
    • /
    • 1998
  • An investigation into the modal interaction of an autoparameteric systemunder broad-band random excitation is made. The specific system examined is a spring-pendulum system with internal resonance, which is known to be a good model for a variety of engineering systems, including ship motions with nonlinear coupling between pitching and rolling motions. By means of the Gaussian closure method the dynamic moment equations explaining the random responses of the system are reduced to a system of autonomous ordinanary differential equations of the first and second moments. In view of equilibrium solutions of this system and their stability we examine the system responses. The stabilizing effect of system damping is also examined.

  • PDF

COMPUTATION OF TURBULENT NATURAL CONVECTION WITH THE ELLIPTIC-BLENDING SECOND-MOMENT CLOSURE (타원혼합 이차모멘트 모델을 사용한 난류 자연대류 해석)

  • Choi, S.K.;Han, J.W.;Kim, S.O.;Lee, T.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.102-111
    • /
    • 2016
  • In this paper a computation of turbulent natural convection in enclosures with the elliptic-blending based differential and algebraic flux models is presented. The primary emphasis of the study is placed on an investigation of accuracy of the treatment of turbulent heat fluxes with the elliptic-blending second-moment closure for the turbulent natural convection flows. The turbulent heat fluxes in this study are treated by the elliptic-blending based algebraic and differential flux models. The previous turbulence model constants are adjusted to produce accurate solutions. The proposed models are applied to the prediction of turbulent natural convections in a 1:5 rectangular cavity and in a square cavity with conducting top and bottom walls, which are commonly used for validation of the turbulence models. The relative performance between the algebraic and differential flux model is examined through comparing with experimental data. It is shown that both the elliptic-blending based models predict well the mean velocity and temperature, thereby the wall shear stress and Nusselt number. It is also shown that the elliptic-blending based algebraic flux model produces solutions which are as accurate as those by the differential flux model.

Time-Dependent Differential Equation of PSC Flexural Member with Constant Eccentricity (직선배치 긴장재를 갖는 PSC 휨 부재의 시간종속적 지배미분방정식)

  • 강병수;김택중;조용덕;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.303-308
    • /
    • 2002
  • A governing differential equation (GDE) of PSC flexural member with constant eccentricity considering the long-term losses including concrete creep, shrinkage, and PS steel relaxation is derived based on the two approaches. The first approach utilizes the force and moment equilibrium equations derived based on the geometry of strains of the uniform and curvature strains while the second one utilizes the principle of minimum total potential energy formulation. The identity of the two GDE's is verified by comparing the coefficients consisting of the GDE's. The boundary conditions resulting from the functional analysis of the variational calculus are investigated. Rayleigh-Ritz method provides a way to get the explicit form of the continuous deflection function in which the total potential energy is minimized with respect to the unknown coefficients consisting of the trial functions. As a closure, the analytically calculated results are compared with the experiments and show good agreements.

  • PDF