• 제목/요약/키워드: Second-Moment Turbulence Model

검색결과 21건 처리시간 0.016초

정사각단면을 갖는 $180^{\circ}$ 곡관내의 2차 모멘트 난류모형에 관한 연구 (Study on the Second Moment Turbulence Model in a Square Sectioned $180^{\circ}$ Bend)

  • 김명호;염성현;최영돈
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1203-1217
    • /
    • 1994
  • In the present study, in order to analyze a turbulent flow in a square sectiond 180.deg. bend, Kim's low Reynolds number second moment turbulence closure is adopted. In this model, turbulence model constants in the wall region are modified as functions of turbulent Reynolds number by use of near wall turbulent universal properties based on Laufer's experimental results of Reynolds stress distriburions. Algebraic stress model and Reynolds stress equation model are used to verify the low Reynolds number second moment closure. The application of the present low Reynolds number algebraic stress model to the prediction of a square sectioned 180.deg. bend flow gives improved velocities and Reynolds stresses profiles compared with those obtained by using the van Driest mixing length model and present low Reynolds number Reynolds stress equation model.

2차 모멘트 난류모형에 의한 회전하는 평행 평판유동 해석 (Numerical Simulation of Rotating Channel Flows Using a Second Moment Turbulence Closure)

  • 신종근;최영돈
    • 대한기계학회논문집B
    • /
    • 제24권4호
    • /
    • pp.578-588
    • /
    • 2000
  • A low-Reynolds-number second moment turbulence closure is improved with the aid of DNS data. For the model coefficients of pressure-strain terms, we adopted Shima's model with some modification. Shin and Choi's new dissipation-rate equation is employed to simulate accurately the turbulence energy dissipation rate distribution in the near wall sublayer. The results of computations are compared with DNS, LES data and experimental data for turbulent plane channel flow with rotation about spanwise axis. The present second moment closure achieves a level of agreement similar to that for the non-rotating. In particular, it accurately captures the distribution of turbulence energy dissipation rate in the near wall region.

이차모멘트 난류모델을 사용한 Rayleigh-Benard 자연대류 유동 해석 (ANALYSIS OF RAYLEIGH-BENARD NATURAL CONVECTION WITH THE SECOND-MOMENT TURBULENCE MODEL)

  • 최석기;김성오
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.111-117
    • /
    • 2008
  • This paper reports briefly on the computational results of a turbulent Rayleigh-Benard convection with the elliptic-blending second-moment closure (EBM). The primary emphasis of the study is placed on an investigation of accuracy and numerical stability of the elliptic-blending second-moment closure for the turbulent Rayleigh-Benard convection. The turbulent heat fluxes in this study are treated by the algebraic flux model with the temperature variance and molecular dissipation rate of turbulent heat flux. The model is applied to the prediction of the turbulent Rayleigh-Benard convection for Rayleigh numbers ranging from $Ra=2{\times}10^6$ to $Ra=10^9$, and the computed results are compared with the previous experimental correlations, T-RANS and LES results. The predicted cell-averaged Nusselt number follows the correlation by Peng et al.(2006) ($Nu=0.162Ra^{0.286}$) in the 'soft' convective turbulence region ($2{\times}10^6{\leq}Ra{\leq}4{\times}10^7$) and it follows the experimental correlation by Niemela et al. (2000) ($Nu=0.124Ra^{0.309}$) in the 'hard' convective tubulence region ($10^8{\leq}Ra{\leq}10^9$) within 5% accuracy. This results show that the elliptic-blending second-moment closure with an algebraic flux model predicts very accurately the Rayleigh Benard convection.

  • PDF

Rayleigh-Benard 자연대류 유동 해석 (ANALYSIS OF RAYLEIGH-BENARD NATURAL CONVECTION)

  • 최석기;김성오
    • 한국전산유체공학회지
    • /
    • 제13권3호
    • /
    • pp.62-68
    • /
    • 2008
  • This paper reports briefly on the computational results of a turbulent Rayleigh-Benard convection with the elliptic-blending second-moment closure (EBM). The primary emphasis of the study is placed on an investigation of accuracy and numerical stability of the elliptic-blending second-moment closure for the turbulent Rayleigh-Benard convection. The turbulent heat fluxes in this study are treated by the algebraic flux model with the temperature variance and molecular dissipation rate of turbulent heat flux. The model is applied to the prediction of the turbulent Rayleigh-Benard convection for Rayleigh numbers ranging from Ra=$2{\times}10^6$ to Ra=$10^9$ and the computed results are compared with the previous experimental correlations, T-RANS and LES results. The predicted cell-averaged Nusselt number follows the correlation by Peng et al.(2006) (Nu=$0.162Ra^{0.286}$) in the 'soft' convective turbulence region ($2{\times}10^6{\leq}Ra{\leq}4{\times}10^7$) and it follows the experimental correlation by Niemela et al. (2000) (N=$0.124Ra^{0.309}$) in the 'hard' convective turbulence region ($10^8{\leq}Ra{\leq}10^9$) within 5% accuracy. This results show that the elliptic-blending second-moment closure with an algebraic flux model predicts very accurately the Rayleigh-Benard convection.

DNS 자료에 의한 저레이놀즈수 2차 모멘트 난류모형의 개발 (Development of Low-Reynolds-Number Ssecond Moment Turbulence Closure by DNS Data)

  • 신종근;최영돈
    • 대한기계학회논문집B
    • /
    • 제20권8호
    • /
    • pp.2572-2592
    • /
    • 1996
  • A low-Reynolds-number second moment turbulence closure was developed with the aid of DNS data. Model coefficients of nonlinear return to isotropy term were derived by use of Cayley-Hamilton theorem and two component turbulence limit condition as the functions of invariances of anisotropy and turbulent Reynolds number. Launder and Tselepidakis' cubic mean pressure strain model was modified to fit the predicted pressure-strain components to the DNS data. Two component turbulence limit condition was the precondition to be satisfied in developing the second moment turbulence closure for the realizable Reynolds stress prediction. But the satisfactions of Reynolds stress level and pressure-strain level of each component were compromised because the satisfaction of both levels was impossible.

저레이놀즈수 2차 모멘트 난류모형에 의한 정사각단면의 $180^{\circ}$ 곡덕트 난류유동의 수치해석 (Numerical computation of turbulent flow in a square sectioned $180^{\circ}$ bend by low-Reynolds-number second moment turbulence closure)

  • 신종근;최영돈
    • 대한기계학회논문집B
    • /
    • 제20권8호
    • /
    • pp.2650-2669
    • /
    • 1996
  • A new low Reynolds number nonlinear second moment turbulence closure was introduced to analyze a square sectioned 180.deg. bend flow. Inclusion of nonlinear return to isotropy term and cubic mean pressure strain term has brought out a marked improvement in the level of agreement with measured velocity profiles. Optimization of present closure was performed by comparison of computed velocity profiles with the experimental ones with variation of nonlinear return to isotropy term and quadratic and cubic pressure-strain model. Progressive vortex breakdown due to the interaction of primary and secondary flows was well captured by using the optimized second moment turbulence closure.

Modelling the Leipzig Wind Profile with a (k-ε) model

  • Hiraoka, H.
    • Wind and Structures
    • /
    • 제4권6호
    • /
    • pp.469-480
    • /
    • 2001
  • The Leipzig Wind Profile is generally known as a typical neutral planetary boundary layer flow. But it became clear from the present research that it was not completely neutral but weakly stable. We examined whether we could simulate the Leipzig Wind Profile by using a ($k-{\varepsilon}$) turbulence model including the equation of potential temperature. By solving analytically the Second Moment Closure Model under the assumption of local equilibrium and under the condition of a stratified flow, we expressed the turbulent diffusion coefficients (both momentum and thermal) as functions of flux Richardson number. Our ($k-{\varepsilon}$) turbulence model which included the equation of potential temperature and the turbulent diffusion coefficients varying with flux Richardson number reproduced the Leipzig Wind Profile.

이차모멘트 난류모델을 사용한 성층화된 자연대류 유동 해석 (ANALYSIS OF A STRATIFIED NATURAL CONVECTION FLOW WITH THE SECOND-MOMENT CLOSURE)

  • 최석기;김성오
    • 한국전산유체공학회지
    • /
    • 제12권3호
    • /
    • pp.55-61
    • /
    • 2007
  • A computational study on a strongly stratified natural convection is performed with the elliptic blending second-moment closure. The turbulent heat flux is treated by both the algebraic flux model (AFM) and the differential flux model (DFM). Calculations are performed for a turbulent natural convection in a square cavity with conducting top and bottom walls and the calculated results are compared with the available experimental data. The results show that both the AFM and DFM models produce very accurate solutions with the elliptic-blending second-moment closure without invoking any numerical stability problems. These results show that the AFM and DFM models for treating the turbulent heat flux are sufficient for this strongly stratified flow. However, a slight difference between two models is observed for some variables.

2차모멘트 난류모형을 이용한 정사각 단면 곡덕트 내 발달하는 난류유동 변화에 대한 고찰 (Investigation on the Developing Turbulent Flow In a Curved Duct of Square Cross-Section Using a Low Reynolds Number Second Moment Turbulence Closure)

  • 전건호;최영돈;신종근
    • 대한기계학회논문집B
    • /
    • 제23권8호
    • /
    • pp.1063-1071
    • /
    • 1999
  • Fine grid calculations are reported for the developing turbulent flow in a curved duct of square cross-section with a radius of curvature to hydraulic diameter ratio ${\delta}=Rc/D_H=3.357 $ and a bend angle of 720 deg. A sequence of modeling refinements is introduced; the replacement of wall function by a fine mesh across the sublayer and a low Reynolds number algebraic second moment closure up to the near wall sublayer in which the non-linear return to isotropy model and the cubic-quasi-isotropy model for the pressure strain are adopted; and the introduction of a multiple source model for the exact dissipation rate equation. Each refinement is shown to lead to an appreciable improvement in the agreement between measurement and computation.