• Title/Summary/Keyword: Seasonal energy

Search Result 418, Processing Time 0.025 seconds

A Study on Chemical Characteristics of Aerosol Composition at West Inflow Regions in the Korean Peninsula I. Characteristics of PM Concentration and Chemical Components (한반도 서부유입권역에서 대기 중 에어로졸 성분의 화학적 특성 연구 I. PM 농도 및 화학 성분 특성)

  • Choi, Jin-Soo;Kim, Jeong-Ho;Lee, Tae-Hyoung;Choi, Yong-Joo;Park, Tae-Hyun;Oh, Jun;Park, in-Soo;Ahn, Joon-Young;Jeon, Ha-Eun;Koo, Youn-Seo;Kim, Shin-Do;Hong, You-Deog;Hong, Ji-Hyung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.5
    • /
    • pp.469-484
    • /
    • 2016
  • HR-ToF-AMS was applied for a seasonal and size-distributional measurements for inorganic ($SO{_4}^{2-}$, $NO_3{^-}$, $NH_4{^+}$, $Cl^-$) and organic components in Baegryung Island Super Site. The average concentration of $PM_{1.0}$ remarks $12.9{\mu}g/m^3$ while $14.5{\mu}g/m^3$ in Spring time, $14.2{\mu}g/m^3$ in Winter, $13.1{\mu}g/m^3$ in Summer and $9.86{\mu}g/m^3$ in Autumn. The mass of measured $PM_{1.0}$ shows 54.6% of $PM_{2.5}$ which is similar to those of Beijing and Lanzhou, China. The highest portion of Chemical composition is $SO{_4}^{2-}$ marking 41.0%, 31.8% by organics, 13.5% by $NH_4{^+}$, 12.8% by $NO_3{^-}$ and 1% by $Cl^-$. In every seasons, except winter, $SO{_4}^{2-}$ remarks the highest level, organic components take place the highest in winter time. The size-distribution of $PM_{1.0}$ components scattered at accumulation mode of 200 nm~800 nm which means the influence of primary emission is low. In case of air stream from the industrialized area of Sandung, Shanghai, China, the concentrations of such components were distributed a bit higher.

Properties of Solar Radiation Components Reflected by the Sea Surface: - A Case of Jeju Island, South Korea - (해수면에 의해 반사된 태양복사 성분의 특성: 남한의 제주도 사례)

  • Fumichika, Uno;Hayashi, Yousay;Hwang, Soo-Jin;Kim, Hae-Dong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.2
    • /
    • pp.48-55
    • /
    • 2011
  • Solar radiation components reflected by the sea surface ($R_{ss}\uparrow$) are additional energy sources comprising the solar radiation regime. Previous studies, based on observational approaches, indicated that $R_{ss}\uparrow$ is an available climatological resource. However, an estimation process for $R_{ss}\uparrow$ has not been established. In this case study over Jeju Island in South Korea, we applied a new estimation process to solar radiation modeling and discussed the spatial distribution of $R_{ss}\uparrow$ and its seasonal variation. Our results showed that the illuminated area and the intensity of $R_{ss}\uparrow$ became greatest at the winter solstice and least at the summer solstice. We estimated the illuminated area of $R_{ss}\uparrow$ as it expanded over the southern slope of Jeju Island. At the winter solstice, on a daily basis, the area and intensity of illumination by $R_{ss}\uparrow$ were $182.3km^2$ and $0.41\;MJ\;m^{-2}\;day\;{-1}$, respectively. Comparing the daily accumulative and instantaneous values of $R_{ss}\uparrow$ intensity, the difference was about 20 times greater in daily cases than in instantaneous cases. On the other hand, for instantaneous values, the $R_{ss}\uparrow$ intensity accounted for up to 33% of the three components, i.e., direct, diffuse and reflected radiation in winter solstice. In addition, it was estimated that the sea surface reflectance depended on the wind speed. Therefore, in a practical use of this revised model, wind conditions should be considered as a critical factor in estimating $R_{ss}\uparrow$.

Optimal Site Selection of Floating Offshore Wind Farm using Genetic Algorithm (유전 알고리즘을 활용한 부유식 해상풍력단지 최적위치 선정)

  • Lee, Jeong-Seok;Son, Woo-Ju;Lee, Bo-Kyeong;Cho, Ik-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.658-665
    • /
    • 2019
  • Among the renewable energy resources, wind power is growing rapidly in terms of technological development and market share. Recently, onshore wind farm have been affected by limitations of terrestrial space and environmental problems. Consequently, installation sites have been moved to the sea, and the development of floating offshore wind farms that are installed at deep waters with more abundant wind conditions is actively underway. In the context of maritime traffic, the optimal site of offshore wind farms is required to minimize the interference between ships and wind turbines and to reduce the probability of accidents. In this study, genetic algorithm based AIS(Automatic Indentification System) data composed of genes and chromosomes has been used. The optimal site of floating offshore wind farm was selected by using 80 genes and by evaluating the fitness of genetic algorithm. Further, the final site was selected by aggregating the seasonal optimal site. During analysis, 11 optimal site were found, and it was verified that the final site selected usng the genetic algorithm was viable from the perspective of maritime traffic.

Development of Long-Term Electricity Demand Forecasting Model using Sliding Period Learning and Characteristics of Major Districts (주요 지역별 특성과 이동 기간 학습 기법을 활용한 장기 전력수요 예측 모형 개발)

  • Gong, InTaek;Jeong, Dabeen;Bak, Sang-A;Song, Sanghwa;Shin, KwangSup
    • The Journal of Bigdata
    • /
    • v.4 no.1
    • /
    • pp.63-72
    • /
    • 2019
  • For power energy, optimal generation and distribution plans based on accurate demand forecasts are necessary because it is not recoverable after they have been delivered to users through power generation and transmission processes. Failure to predict power demand can cause various social and economic problems, such as a massive power outage in September 2011. In previous studies on forecasting power demand, ARIMA, neural network models, and other methods were developed. However, limitations such as the use of the national average ambient air temperature and the application of uniform criteria to distinguish seasonality are causing distortion of data or performance degradation of the predictive model. In order to improve the performance of the power demand prediction model, we divided Korea into five major regions, and the power demand prediction model of the linear regression model and the neural network model were developed, reflecting seasonal characteristics through regional characteristics and migration period learning techniques. With the proposed approach, it seems possible to forecast the future demand in short term as well as in long term. Also, it is possible to consider various events and exceptional cases during a certain period.

  • PDF

Analysis of the Outdoor Design Conditions for Greenhouse Heating and Cooling Systems in Korea (온실의 냉난방시스템 설계용 외부기상조건 분석)

  • Nam, Sang-Woon;Shin, Hyun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.308-319
    • /
    • 2016
  • In order to set the outdoor weather conditions to be applied to the design standard of the greenhouse heating and cooling system, outdoor air temperature and heating degree-hour for heating design, dry bulb temperature, wet bulb temperature and solar irradiance for cooling design were analyzed and presented. For every region in Korea, we used thirty years from 1981 to 2010 hourly weather data for analysis, which is the current standard of climatological normal provided by KMA. Since the use of standard weather data is limited, design weather conditions were obtained using the entire weather data for 30 years, and the average value of the entire data period was presented as a design standard. The design weather data with exceedance probability of 1, 2.5, and 5% were analyzed by the TAC method, and we presented the distribution map with exceedance probability of 1% for heating and 2.5% for cooling which are recommended by design standards. The changes of maximum heating load, seasonal heating load and maximum cooling load were examined by regions, exceedance probabilities, and setpoint temperatures. The proposed outdoor design conditions can be used not only directly for the greenhouse heating and cooling design, but also for the reinforcement of heating and cooling facilities and the establishment of energy saving measures. Recently, due to the climate change, sweltering heat in summer and abnormal temperature in winter are occurring frequently, so we need to analyze weather data periodically and revise the design standard at least every 10 years cycle.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Efficient Bio-gasification Facility of Fig Manure and Food Waste(I): (가축분뇨 병합처리 바이오가스화를 위한 설계 및 운전 기술지침 마련 연구(I): 현장조사 결과 중심으로)

  • Lee, Dongjin;Moon, HeeSung;Son, Jihwan;Bae, Jisu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.2
    • /
    • pp.91-100
    • /
    • 2017
  • The purpose of this study is to provide a design and operation technical guideline for meeting the appropriate design criteria to bio-gasification facilities treating organic wastes. In accordance with the government's mid-to long-term policies on bio-gasification and energization of organic wastes, the expansion of the waste-to-energy (WTE) facilities is being remarkably promoted. However, because of the limitation of livestock manure containing low-concentration of volatile solids, there has been increased in combined bio-gasification without installing new anaerobic digestion facilities. The characteristics and common problems of each treatment processes were investigated for on-going 13 bio-gasification facilities. The seasonal precision monitoring of chemicophysics analysis on anaerobic digestor samples was conducted to provide guidelines for design and operation according to the progress of bio-gasification treatment. Consequently, major problems were investigated such as large deviation of organic materials depending on seasons, proper dehumidification of biogas and pretreatment of hydrogen sulfide.

Analyses of Scenarios Based on a Leakage of Highly Compressed Air and Fire Anticipated in CAES (Compressed Air Energy Storage) Facility (압축공기에너지저장 시설에서 발생 가능한 압축공기 유출 및 화재 시나리오 분석)

  • Yoon, Yong-Kyun;Ju, Eun-Hye
    • Tunnel and Underground Space
    • /
    • v.25 no.6
    • /
    • pp.568-576
    • /
    • 2015
  • In this study, scenarios based on the leakage of highly compressed air and fire occurrence turned out to be high risks in an operation stage of CAES facility were constructed and estimated. By combining Bernoulli equation with momentum equation, an expression to calculate an impact force of a jet flow of compressed air was derived. An impact force was found to be proportional to the square of diameter of fracture and the pressure of compressed air. Four types of fire scenarios were composed to evaluate an effects that seasonal change and location of fire source have on the spread behavior of smoke. Smoke from the fire ignited in the vicinity of CAES opening descended more quickly below the limit line of breathing than one from the fire occurred 10 m away from CAES opening, which is expected to occur due to a propagation of wave front of smoke. It was shown that a rate of smoke spread of the winter fire is faster than one of the summer fire and smoke from the winter fire spreads farther than one of the summer fire, which are dependent on the direction of air flow into access opening. Evacuation simulation indicated that the required safe evacuation time(RSET) of the summer and winter fires are 262, 670 s each.

Zooplankton Grazing on Bacteria and Factors Affecting Bacterial C-flux in Lake Paldang Ecosystem (팔당호 생태계에서 동물플랑크톤의 박테리아 섭식 및 영향인자)

  • Uhm, Seong-Hwa;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.4 s.118
    • /
    • pp.424-434
    • /
    • 2006
  • This study investigates bacteria-zooplankton grazing link and factors affecting their grazing relationship at trophically different two sites (Paldang Dam and Kyungan Stream) of Lake Paldang Ecosystem from April to December, 2005. Zooplankton were divided into two size groups; microzooplankton (MICZ) : 60-200 ${\mu}m$ and macrozooplankton (MACZ): >200 ${\mu}m$), and their grazing rates on bacteria were conducted for each size group separately. Bacterial abundance and seasonal change pattern were similar between two sites. MICZ, mostly rotifers (e.g., Brachionus, Keratella, Polyathra) were numerically dominant at both sites, while carbon biomass was highest in cladocerans. Zooplankton biomass was higher at the Kyungan Steam site compared to Paldang Dam site, and their high biomass during spring decreased as they were passing through the storm events in summer season at both sites. Zooplankton clearance rate (CR) was high in spring and autumn while low in summer at Paldang Dam site. However, zooplankton CR was high during the summer at Kyungan Stream site. Bacterial C-flux was high in spring and autumn when MACZ (esp. cladecerans) developed at a high biomass level at both sites. Overall, MACZ community CR and carbon flux (C-flux) were higher than those of MICZ, and the degree of difference between them was higher at Kyungan Stream site. Short hydraulic residence time and physical disturbance caused by summer storm event appeared to affect the zooplankton grazing on bacteria at both sites. The results of this study indicate that bacteria are potentially important carbon source of zooplankton, and that both biotic (e.g,, prey and predator taxa composition and abundance) and physical parameters appear to alter energy transfer in the planktonic food web of this river-reservoir hybrid system.

Influences of Oceanographic Features on Spatial and Temporal Distributions of Size Spectrum of Walleye Pollock, Gadus chalcogrammus Inhabiting Middle Eastern Coast of Korea (동해 중부 연안 환경 변화에 따른 명태 개체 크기 및 분포의 시공간적 변화)

  • Jung, Hae Kun;Lee, Chung Il;Park, Hyun Je;Park, Joo Myun
    • Korean Journal of Ichthyology
    • /
    • v.32 no.3
    • /
    • pp.148-159
    • /
    • 2020
  • This study investigated the seasonal and inter-annual changes in vertical distribution and size spectrum of walleye pollock, Gadus chalcogrammus inhabiting middle eastern coast of Korea (hear after pollock). Pollock was distributed between 50 m and 600 m depth range, and body size (total length) ranged from 16.6 cm to 81.5 cm. The trends of population body size were increased in autumn and winter and decreased in spring and summer. Vertical distribution of pollock showned depth-dependent patterns with distributing smaller individuals mainly in the upper layer (shallower depth), while larger fish in deeper habitats. Those patterns in vertical distribution of pollock population is probably due to be the results of energy-saving strategy, metabolic effects, and changes in prey selections according to pollock growth, derived from spatial and temporal changes in oceanic condition in habitat grounds. When water temperature in upper layer were increased and that of below thermocline depth became decreased in 2017, the ratio of smaller (<35 cm) and larger (≥35 cm) individuals was biased toward larger fishes, extending their distribution into shallow depth, and consequently main fishing ground was formed in far from coastal area. In addition, the ratio of smaller individual distributing between 100~300 m was increased with decreasing temperature gradient between below thermocline and bottom layer. Changes in spatial and temporal distributions of pollock population likely be related with vertical and horizontal changes in oceanic conditions and, consequently food supplies.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Power Generation and Stream - Results of the Field Investigation (바이오가스 이용 기술지침 마련을 위한 연구(I) - 현장조사 결과 중심으로)

  • Moon, HeeSung;Bae, Jisu;Park, Hoyeun;Jeon, Taewan;Lee, Younggi;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.1
    • /
    • pp.55-64
    • /
    • 2018
  • The purpose of this study is to provide a design and operation technical guideline for meeting the appropriate design criteria to biogas utilization treating organic wastes. In accordance with the government's mid-to long-term policies on bio-gasification and energization of organic wastes, the expansion of the waste-to-energy (WTE) facilities is being remarkably promoted. However, because of the limitation of livestock manure containing low-concentration of volatile solids, there has been increased in combined bio-gasification without installing new anaerobic digestion facilities. The characteristics and common problems of each treatment processes were investigated for on-going 11 bio-gasification facilities. The seasonal precision monitoring of chemicophysics analysis on anaerobic digestor samples was conducted to provide guidelines for design and operation according to the progress of biogas utilization. Consequently, Major problems were investigated such as large deviation of organic materials depending on seasons, proper dehumidification of biogas, pretreatment of hydrogen sulfide, operation of power generation and steam. This study was conducted to optimize biogas utilization of type of organic waste(containing sewage sludge and food waste, animal manure), research the facilities problem through field investigation.