DOI QR코드

DOI QR Code

Influences of Oceanographic Features on Spatial and Temporal Distributions of Size Spectrum of Walleye Pollock, Gadus chalcogrammus Inhabiting Middle Eastern Coast of Korea

동해 중부 연안 환경 변화에 따른 명태 개체 크기 및 분포의 시공간적 변화

  • Jung, Hae Kun (Fisheries Resources and Environment Research Division, East Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Lee, Chung Il (Department of Marine Bioscience, Gangneung-Wonju National University) ;
  • Park, Hyun Je (Department of Marine Bioscience, Gangneung-Wonju National University) ;
  • Park, Joo Myun (Dokdo Research Center, East Sea Research Institute, Korean Institute of Ocean Science & Technology)
  • 정해근 (국립수산과학원 동해수산연구소 자원환경과) ;
  • 이충일 (강릉원주대학교 해양자원육성학과) ;
  • 박현제 (강릉원주대학교 해양자원육성학과) ;
  • 박주면 (한국해양과학기술원 동해연구소 독도전문연구센터)
  • Received : 2020.06.15
  • Accepted : 2020.09.01
  • Published : 2020.09.30

Abstract

This study investigated the seasonal and inter-annual changes in vertical distribution and size spectrum of walleye pollock, Gadus chalcogrammus inhabiting middle eastern coast of Korea (hear after pollock). Pollock was distributed between 50 m and 600 m depth range, and body size (total length) ranged from 16.6 cm to 81.5 cm. The trends of population body size were increased in autumn and winter and decreased in spring and summer. Vertical distribution of pollock showned depth-dependent patterns with distributing smaller individuals mainly in the upper layer (shallower depth), while larger fish in deeper habitats. Those patterns in vertical distribution of pollock population is probably due to be the results of energy-saving strategy, metabolic effects, and changes in prey selections according to pollock growth, derived from spatial and temporal changes in oceanic condition in habitat grounds. When water temperature in upper layer were increased and that of below thermocline depth became decreased in 2017, the ratio of smaller (<35 cm) and larger (≥35 cm) individuals was biased toward larger fishes, extending their distribution into shallow depth, and consequently main fishing ground was formed in far from coastal area. In addition, the ratio of smaller individual distributing between 100~300 m was increased with decreasing temperature gradient between below thermocline and bottom layer. Changes in spatial and temporal distributions of pollock population likely be related with vertical and horizontal changes in oceanic conditions and, consequently food supplies.

본 연구는 동해 중부 연안에 서식하는 명태의 연직 분포와 개체 크기의 계절 및 연간 변화를 분석하였다. 2016년 1월부터 2018년 2월까지 채집된 명태 개체의 전장은 16.6 cm~81.5cm 범위를 나타내었으며, 50~600 m 사이의 수심대에서 어획되었다. 이 중 25~35 cm 그룹이 차지하는 비율은 45.5%, 35~45 cm 그룹이 차지하는 비율은 27.2%를 나타내며 높은 비율을 차지하였다. 평균 전장은 1월에 가장 크고, 6월에 가장 작았으며, 6월 이후 점차 증가하는 계절주기 변동 특성을 나타내었다. 25 cm 미만 그룹은 100~200 m 수심에 서식하는 비율이 겨울철에 가장 높으며, 이후 봄, 여름, 가을에는 보다 깊은 수심으로 주 서식처를 변화하여 400 m 이상 수심에서 서식하는 비율이 40% 이상을 차지하였다. 25~35 cm와 35~45 cm 개체 그룹의 겨울철 연직 분포는 400 m 이상 수심에서 서식하는 비율이 45% 이상을 기록하였으며, 봄과 여름에는 보다 얕은 수심영역으로 서식처를 변화하여 200 m 미만 수심에서 서식하는 비율이 증가하였다. 이후 가을부터는 다시 서식하는 수심대가 깊어져 300 m 이상 수심의 비율이 증가하였다. 45 cm 이상 개체 그룹은 뚜렷한 계절 변동성을 나타내지 않으며 300 m 이상 수심에서 서식하는 비율이 가장 높았다. 이러한 명태의 연직 분포는 서식처의 물리적 환경 변화에 영향을 받는다. 특히, 상층부의 수온이 상승하고 수온약층 아래 100~300 m 수심대의 수온이 하강한 시기에는 300 m 이상의 깊은 수심대에서 어획되는 비율은 감소한 반면, 수온이 하강한 100~300 m 수심대에서 어획되는 비율이 증가하였다.

Keywords

References

  1. Adams, C.F., A.I. Pinchuk and K.O. Coyle. 2007. Seasonal changes in the diet composition and prey selection of walleye pollock (Theragra chalcogramma) in the northern Gulf of Alaska. Fish. Res., 84: 378-389. https://doi.org/10.1016/j.fishres.2006.11.032.
  2. Bang, M., S. Kang, S. Kim and C.J. Jang. 2018. Changes in the biological characteristics of walleye pollock related to demographic changes in the East Sea during the late 20th century. Mar. Coast. Fish., 10: 91-99. https://doi.org/10.1002/mcf2.10004
  3. Brinton, E., M. Ohman, A. Townsend, M. Knight and A. Bridgeman. 2000. Euphausiids of the world ocean. World biodiversity database. Expert center for taxonomic identification, Amsterdam. Retrieved from http://species-identification.org/species.
  4. Csepp, D.J., J.J. Vollenweider and M.F. Sigler. 2011. Seasonal abundance and distribution of pelagic and demersal fishes in southeastern Alaska. Fish. Res., 108: 307-320. https://doi.org/10.1016/j.fishres.2011.01.003
  5. Dwyer, D.A., K.M. Bailey and P.A. Livingston. 1987. Feeding habits and daily ration of walleye pollock (Theragra chalcogramma) in the eastern Bering Sea, with special reference to cannibalism. Can. J. Fish. Aquat. Sci., 44: 1972-1984. https://doi.org/10.1139/f87-242
  6. FAO (Food and Agriculture Organization). 2018. FAO yearbook: Fishery and Aquaculture Statistics. Rome, Italy
  7. Funamoto, T. 2007. Temperature-dependent stock-recruitment model for walleye pollock (Theragra chalcogramma) around northern Japan. Fish. Oceanogr., 16: 515-525. https://doi.org/10.1111/j.1365-2419.2007.00454.x.
  8. Funamoto, T. 2018. Population dynamics of demersal fish focusing on walleye pollock (Gadus chalcogrammus). In: Aoki, I., T. Yamakawa and A. Takasuka (eds.), Fish population dynamics, monitoring, and management. Springer, Japan, pp. 51-75.
  9. Funamoto, T., O. Yamamura, T. Kono, T. Hamatsu and A. Nishimura. 2013. Abiotic and biotic factors affecting recruitment variability of walleye pollock (Theragra chalcogramma) off the Pacific coast of Hokkaido, Japan. Fish. Oceanogr., 22: 193-206. https://doi.org/10.1111/fog.12015.
  10. Jo, M.J., J.J. Kim, J.H. Yang, C.S. Kim and S.K. Kang. 2019. Changes in the ecological characteristics of Todarodes Pacificus associated with long-term catch variations in jigging fishery. Korean J. Fish. Aquat. Sci., 52: 685-695. https://doi.org/10.5657/KFAS.2019.0685.
  11. Jung, H.K., S.M. Rahman, C.-K. Kang, S.-Y. Park, S.H. Lee, H.J. Park, H.-W. Kim and C.I. Lee. 2017. The influence of climate regime shifts on the marine environment and ecosystems in the East Asian Marginal Seas and their mechanisms. Deep-Sea Res. Part II, 143: 110-120. https://doi.org/10.1016/j.dsr2.2017.06.010.
  12. Kang, S. and S. Kim. 2015. What caused the collapse of walleye pollock population in Korean waters? KMI Int. J. Marit. Aff. Fish., 7: 43-58.
  13. Kang, S., J.H. Park and S. Kim. 2013. Size-class estimation of the number of walleye pollock Theragra chalcogramma caught in the southwestern East Sea during the 1970s-1990s. Korean J. Fish. Aquat. Sci., 46: 445-453. https://doi.org/10.5657/KFAS.2013.0445
  14. Kim, K., M.H. Sohn and S.-Y. Hyun. 2017. A life stage-based model for assessing the walleye pollock Gadus chalcogrammus population in the East Sea. Korean J. Fish. Aquat. Sci., 50: 65-76. https://doi.org/10.5657/KFAS.2017.0065.
  15. Kim, P., I. Han, W. Oh, Y.-M. Choi, S. Yoon, H. Lee and K. Lee. 2018. Biomass estimate of euphausiids Euphausia sp. using the two-frequency difference method. Korean J. Fish. Aquat. Sci., 51: 305-312. https://doi.org/10.5657/KFAS.2018.0305.
  16. Kim, Y.H. and M.S. Min. 2008. Seasonal and interannual variability of the north Korean cold current in the East Sea reanalysis data. Ocean Polar Res., 30: 21-31. https://doi.org/10.4217/OPR.2008.30.1.021.
  17. Kooka, K., T. Takatsu, Y. Kamei, T. Nakatani and T. Takahashi. 1998. Vertical distribution and prey of walleye pollock in the northern Japan Sea. Fish. Sci., 64: 686-693. https://doi.org/10.2331/fishsci.64.686.
  18. Lee, C.I., M.H. Han, H.K. Jung, H.J. Park and J.M. Park. 2019. Spawning season, and factors influencing allometric growth pattern and body condition of walleye pollock Gadus chalcogrammus in the middle East Sea, Korea. Korean J. Ichthyol., 31: 141-149. https://doi.org/10.35399/ISK.31.3.3.
  19. Lee, J. 1991. Estimation on optimum fishing effort of walleye pollock fishery in the east coast of Korea: based on the economic analysis between danish seine fishery and trawl fishery for walleye pollock. J. Fish. Bus. Admin., 22: 75-99.
  20. Lee, S.I., S.J. Hwang, J.H. Yang and J.M. Shim. 2008. Seasonal variation in species composition of gill net and trammel net catches in the coastal waters off Wangdol-cho, Korea. Korean J. Ichthyol., 20: 291-302.
  21. Lee, Y. and D.-Y. Kim. 2010. Measuring surface water temperature effects on the walleye pollock fishery production using a translog cost function approach. Environ. Resour. Econ. Rev., 19: 897-914.
  22. Mito, K.-I., A. Nishimura and T. Yanagimoto. 1999. Ecology of groundfishes in the eastern Bering Sea, with emphasis on food habits. In: Loughlin, T.R. and K. Ohtani (eds.), Dynamics of the Bering Sea. University of Alaska Sea Grant, Fairbanks, U.S.A., pp. 537-580.
  23. Miyashita, K., K. Tetsumura, S. Honda, T. Oshima, R. Kawabe and K. Sasaki. 2004. Diel changes in vertical distribution patterns of zooplankton and walleye pollock (Theragra chalcogramma) off the Pacific coast of eastern Hokkaido, Japan, estimated by the volume back scattering strength (Sv) difference method. Fish. Oceanogr., 13: 99-110. https://doi.org/10.1111/j.1365-2419.2004.00313.x.
  24. Noakes, D.J. and R.J. Beamish. 2009. Synchrony of marine fish catches and climate and ocean regime shifts in the North Pacific Ocean. Mar. Coast. Fish., 1: 155-168. https://doi.org/10.1577/C08-001.1.
  25. Oh, T., K. Sakuramoto and S. Lee. 2004. The relationship between spawning area water temperature and catch fluctuation of walleye pollock in the East Sea/Sea of Japan. J. Korean Soc. Fish. Res., 6: 1-13.
  26. Park, H.J., T.H. Park, C.-I. Lee and C.-K. Kang. 2018. Ontogenetic shifts in diet and trophic position of walleye pollock, Theragra chalcogramma, in the western East Sea (Japan Sea) revealed by stable isotope and stomach content analyses. Fish. Res., 204: 297-304. https://doi.org/10.1016/j.fishres.2018.03.006.
  27. Park, S.K. and Y.S. Ok. 1986. Bio-economic research in fishery resource management: walleye pollock. Nongchon-gyungje, 9: 59-68.
  28. Sakurai, Y. and H. Miyake. 1994. Effects of environmental changes on reproductive process of walleye pollock in the subarctic ocean (Background of HUBEC program around Funka Bay as a modeling area). Umi no Kenkyu, 3: 303-308. https://doi.org/10.5928/kaiyou.3.303.
  29. Seo, J.-Y. and O.-N. Kwon. 2017. Naturally collection and development until yolk absorption of domestic walleye pollock Theragra chalcogramma fertilized eggs and larvae. J. Korea Acad.-Indust. Coop. Soc., 18: 49-54. https://doi.org/10.5762/KAIS.2017.18.1.49.
  30. Smith, R., A. Paul and J. Paul. 1986. Effect of food intake and temperature on growth and conversion efficiency of juvenile walleye pollock (Theragra chalcogramma (Pallas)): a laboratory study. ICES J. Mar. Sci., 42: 241-253. https://doi.org/10.1093/icesjms/42.3.241.
  31. Taki, K. 2008. Vertical distribution and diel migration of euphausiids from Oyashio Current to Kuroshio area off northeastern Japan. Plankton Benthos Res., 3: 27-35. https://doi.org/10.3800/pbr.3.27.
  32. Yamamura, O., S. Honda, O. Shida and T. Hamatsu. 2002. Diets of walleye pollock Theragra chalcogramma in the Doto area, northern Japan: ontogenetic and seasonal variations. Mar. Ecol. Prog. Ser., 238: 187-198. https://doi.org/10.3354/meps238187.
  33. Yamamura, O., T. Funamoto, M. Chimura, S. Honda and T. Oshima. 2013. Interannual variation in diets of walleye pollock in the Doto area, in relation to climate variation. Mar. Ecol. Prog. Ser., 491: 221-234. https://doi.org/10.3354/meps10445.
  34. Yang, Y.-S., S.-K. Kang, S.-A. Kim and S.-S. Kim. 2008. Relationship between oxygen isotopic composition of walleye pollock (Theragra chalcogramma) otoliths and seawater temperature. Ocean Polar Res., 30: 249-258. https://doi.org/10.4217/OPR.2008.30.3.249.
  35. Yoo, H.-K., S.-G. Byun, J. Yamamoto and Y. Sakurai. 2015. The effect of warmer water temperature of walleye pollock (Gadus chalcogrammus) larvae. J. Korean Soc. Mar. Environ. Saf., 21: 339-346. https://doi.org/10.7837/kosomes.2015.21.4.339.
  36. Yoshida, H. 1984. Relationship between food-consumption and growth of adult walleye pollock Theragra chalcogramma in captivity. Nippon Suisan Gakk., 50: 763-769. https://doi.org/10.2331/suisan.50.763
  37. Yoshida, H. 1994. Food and feeding habits of pelagic walleye pollock in the central Bering Sea in summer. Sci. Rep. Hokkaido Fish. Exp. Stn., 45: 1-35.