• Title/Summary/Keyword: Sclerotium rot

Search Result 108, Processing Time 0.023 seconds

Research on Ginseng Diseases in Korea (인삼 병 연구의 과거와 현재)

  • 유연현;오승환
    • Journal of Ginseng Research
    • /
    • v.17 no.1
    • /
    • pp.61-68
    • /
    • 1993
  • From the early 1,100 to 1,900, ginseng cultivation seemed to be practiced with management of the diseases which were, in general, referred to a "disaster" at that time. Farmers had individually developed their own methods to manage the disaster with a try and error from generations to generations. It was not determined until 1909, however, that plant pathogens as a new concept was involved in the disaster and thirteen ginseng diseases were reported in Korea by Japanese plant pathologists. The intensive researches have been carried out from 1978 when Korea Ginseng and Tobacco Research Institute was established. Among the ginseng diseases reported in ginseng growing countries, Altemaria Panax, Eotrytis sp., Cylindrocarpon destmctans, Colletotrichum gloeosporioides, Erwinia carotovora subsp. carotovora, Pythium app. Phytophthora cactomm, Sclerotinia sp., Sclerotium rolfsii, and root rot caused by nitylenchus destructor have been observed in Korea and the appropriate control methods for the major diseases were developed. However, the other nine diseases reported by former researchers have not been confirmed for their pathogenicities and/or occurrences on ginseng yetinseng yet.

  • PDF

Multiplex TaqMan qPCR Assay for Detection, Identification, and Quantification of Three Sclerotinia Species

  • Dong Jae Lee;Jin A Lee;Dae-Han Chae;Hwi-Seo Jang;Young-Joon Choi;Dalsoo Kim
    • Mycobiology
    • /
    • v.50 no.5
    • /
    • pp.382-388
    • /
    • 2022
  • White mold (or Sclerotinia stem rot), caused by Sclerotinia species, is a major air, soil, or seed-transmitted disease affecting numerous crops and wild plants. Microscopic or culture-based methods currently available for their detection and identification are time-consuming, laborious, and often erroneous. Therefore, we developed a multiplex quantitative PCR (qPCR) assay for the discrimination, detection, and quantification of DNA collected from each of the three economically relevant Sclerotinia species, namely, S. sclerotiorum, S. minor, and S. nivalis. TaqMan primer/probe combinations specific for each Sclerotinia species were designed based on the gene sequences encoding aspartyl protease. High specificity and sensitivity of each probe were confirmed for sclerotium and soil samples, as well as pure cultures, using simplex and multiplex qPCRs. This multiplex assay could be helpful in detecting and quantifying specific species of Sclerotinia, and therefore, may be valuable for disease diagnosis, forecasting, and management.

Isolation of Antimicrobial Active Substance from Usnea longissima against Sclerotial Rot (Sclerotinia sclerotiorum) (송라(Usnea longissima)추출물로부터 균핵병 병원균(Sclerotinia sclerotiorum)에 대한 항균 활성물질 탐색)

  • Kwon, Yubin;Choi, Yong-Hwa
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.887-896
    • /
    • 2015
  • To develop environment-friendly agricultural products with anti-microbial activity against Sclerotinia sclerotiorum as a pathogen of sclerotium disease, Usnea longissima was extracted by methanol and its extract was fractionated into several solvent fractions. The chloroform fraction, which showed the highest antimicrobial activity, was separated by silica gel-column chromatography and obtained into nine group subfractions. The nine group fractions were searched the antifungal activities by bioassay. The most active No. 3 subfraction was analyzed by GC-MS. Each mass spectra, corresponding to each peak of chromatogram, was compared to database of Wiley library. As a result, Usnic acid was identified as main compounds. In conclusion, Usnic acid isolated from Usnea longissima was antimicrobial chemical against Sclerotinia sclerotiorum as a pathogen of sclerotium disease.

Draft Genome Sequence of the Reference Strain of the Korean Medicinal Mushroom Wolfiporia cocos KMCC03342

  • Bogun Kim;Byoungnam Min;Jae-Gu Han;Hongjae Park;Seungwoo Baek;Subin Jeong;In-Geol Choi
    • Mycobiology
    • /
    • v.50 no.4
    • /
    • pp.254-257
    • /
    • 2022
  • Wolfiporia cocos is a wood-decay brown rot fungus belonging to the family Polyporaceae. While the fungus grows, the sclerotium body of the strain, dubbed Bokryeong in Korean, is formed around the roots of conifer trees. The dried sclerotium has been widely used as a key component of many medicinal recipes in East Asia. Wolfiporia cocos strain KMCC03342 is the reference strain registered and maintained by the Korea Seed and Variety Service for commercial uses. Here, we present the first draft genome sequence of W. cocos KMCC03342 using a hybrid assembly technique combining both short- and long-read sequences. The genome has a total length of 55.5 Mb comprised of 343 contigs with N50 of 332 kb and 95.8% BUSCO completeness. The GC ratio was 52.2%. We predicted 14,296 protein-coding gene models based on ab initio gene prediction and evidence-based annotation procedure using RNAseq data. The annotated genome was predicted to have 19 terpene biosynthesis gene clusters, which was the same number as the previously sequenced W. cocos strain MD-104 genome but higher than Chinese W. cocos strains. The genome sequence and the predicted gene clusters allow us to study biosynthetic pathways for the active ingredients of W. cocos.

Sclerotinia Rot on Basil Caused by Sclerotinia sclerotiorum in Korea (Sclerotinia sclerotiorum에 의한 바질 균핵병)

  • Hahm, Soo Sang;Kim, Byoung Ryun;Han, Kwang Seop;Kwon, Mi Kyung;Park, In Hee
    • Research in Plant Disease
    • /
    • v.23 no.1
    • /
    • pp.56-59
    • /
    • 2017
  • During growing season of 2011 to 2013, Sclerotinia rot symptoms consistently have been observed on basil in Yesan-gun, Chungcheongnam-do in Korea. The typical symptom formed initially brownish spot on leaf and stem, and then advancing margins, wilting the whole plant and blighting, eventually died. On the surface of diseased lesions was observed cottony, white, dense mat of mycelial growth, and sclerotia ($30-100{\mu}m$ diameter) formed on stem and leaf. Morphological and cultural characteristic on potato dextrose agar, color of colony was white and colorless chocolate, sclerotium of irregular shape of the oval was black and $5-50{\mu}m$ diameter in size. In pathogenicity test, necrosis and wilt of the inoculated stem were observed in all plants and the pathogen was reisolated from stems. On the basis of mycological characteristics, pathogenicity, and internal transcribed spacer rDNA sequence analysis, this fungus was identified as Sclerotinia sclerotiorum. This is the first report of Sclerotinia rot on basil caused by S. sclerotiorum in Korea.

Isolation and Partial Characterization of Phytotoxic Mycotoxins Produced by Sclerotinia sp., a Potential Bioherbicide for the Control of White Clover(Trifoliorum repens)

  • Hong, Yeon-Kyu;Lee, Bong-Choon;Jung, Won-Kwon;Bae, Soon-Do;Park, Sung-Tae;Uhm, Jae-Youl
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.52-57
    • /
    • 2004
  • Sclerotinia sp. (isolate BWC98-105) causes stem blight and root rot in Leghum sp., and is presently being evaluated as a potential mycoherbicide for the control of Trifoliorium repens. Bioassays have shown that Sclerotinia sp. produces phytotoxic substance which is biologically active against T. repens. Two biologically active compounds, designated as compoundsI and II, were produced in vitro from the culture filtrate of BWC98-105 isolate Sclerotium sp. Compounds I and II were purified by means of liquid-liquid extraction and $C_{18}$ open column chromatography (300 ${\times}$ 30 mm, i.d). To determine the purity, the purified compounds were analyzed by RP-HPLC. The analytical RP-HPLC column was a TOSOH ODS-120T (150 ${\times}$ 4.6 mm i.d, Japan), of which the flow rate was set at 0.7 mL/min using the linear gradient solvent system initiated with 15 % methanol to 85 % methanol for 50 min with monitoring at 254 nm. Under these RP-HPLC conditions, compounds I and II eluted at 3.49 and 4.13 min, respectively. Compound II was found to be most potent and host specific. However, compound I had a unique antibiotic activity against phytopathogenic bacteria like bacterial leaf blight (Xanthomonas oryzae) on rice, where it played a less important role in producing toxicity on T. repens. No toxin activity was detected in the water fraction after partitioning with several organic solvents. However, toxin activity was detected in the ethyl acetate and butanol fractions. In the leaf bioassay using compound II, the disease first appeared within 4-5 h as water soaked rot, which subsequently developed into well-defined blight affecting the whole plant.

The Isolation and Characterization of the Antagonistic Microorganisms, Serratia marcescens-YJK1, for Major Pathogens on Paprika (파프리카에 발생하는 주요 병원균에 대한 길항미생물, Serratia marcescens-YJK1, 분리와 특성)

  • Yang, Soo-Jeong;Kim, Hyung-Moo;Ju, Ho-Jong
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.4
    • /
    • pp.855-868
    • /
    • 2014
  • Synthetic agro-chemicals have been widely used to control diseases on paprika but these days negative attention has been increasing to use of them because of several adverse effects. This research was conducted to isolate and to characterize the antagonistic microorganism to control major paprika diseases, gray mold rot, fruit and stem rot, phytophthora blight, sclerotium rot, and wilt disease. Analysis of the fatty acid and analysis of the 16S rDNA gene sequence revealed that YKJ1 isolated in this research belongs to a group of Serratia marcescens. Specially, 16S rDNA gene sequence of YKJ1 showed 99% of sequence similarity with S. marcescens. Observation through the optical microscope revealed that YKJ1 suppressed the spore germination and the hyphal growth of pathogens. YKJ1 treatment on pathogens induced marked morphological changes like hyphal swelling and degradation of cell wall. In the case of phytophthora blight, the zoosporangium formation was restrained. S. marcescens found in this study call as S. marcescens-YKJ1 and it may be valuable as one of biological control agents against major diseases of paprika in the future even though it is require to be tested with more study on field test.

Isolation of Antimicrobial Active Substance from Aristolochia tagala Champ. against Sclerotial Rot (Sclerotinia sclerotiorum) (이엽마두령(Aristolochia tagala Champ.)추출물로부터 균핵병 병원균(Sclerotinia sclerotiorum)에 대한 항균 활성물질 탐색)

  • Kim, Hyun-Sang;Shon, Jinhan;Choi, Yong-Hwa
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.951-962
    • /
    • 2015
  • To develop environment-friendly agricultural products with anti-microbial activity against Sclerotinia sclerotiorum as a pathogen of sclerotium disease, Aristolochia tagala Champ. was extracted by methanol and its extract was fractionated into several solvent fractions. The chloroform fraction, which showed the highest antimicrobial activity, was separated by column chromatography and obtained forty three subfractions. The forty three fractions were searched the anti-fungal activities by bioassay. The most active No. 26 subfraction was analyzed by GC-MS. Each mass spectra, corresponding to each peak of chromatogram, was compared to MS database of Wiley library. As a result, 2,4-di-tetra-butyl-phenol, 2-mono-palmitin, 1-mono-stearin were profiled as maine compounds in No. 26 subfraction. Bioassay using commercial 1-mono-stearin to test for the anti-microbial activity conformed the antimicrobial active compound. In conclusion, 1-mono-stearin identified from Aristolochia tagala Champ. was antimicrobial chemical against Sclerotinia sclerotiorum.