• Title/Summary/Keyword: Scientific Inquiry Skills

Search Result 150, Processing Time 0.023 seconds

An Analysis of the Characteristics of Teachers' Adaptive Practices in Science Classes (과학 수업에서 교사의 적응적 실행의 특징 분석)

  • Heekyong Kim;Bongwoo Lee
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.4
    • /
    • pp.403-414
    • /
    • 2023
  • In this study, we examined the adaptive practices of science teachers in their classrooms and their perspectives on the distinguishing features of these practices within science subjects. Our analysis comprised 339 cases from 128 middle and high school science teachers nationwide, and 199 cases on the characteristics of adaptive practices in science disciplines. The primary findings were as follows: First, the most significant characteristic of adaptive practice in science disciplines pertained to experimental procedures. Within the 'suggestion of additional materials/activities' category, the most frequently cited adaptive practice, teachers incorporated demonstrations to either facilitate student comprehension or enhance motivation. Additionally, 'experimental equipment manipulation or presentation of inquiry skills' emerged as the second most common adaptive practice related to experiments. Notably, over 50% of teacher responses regarding the characteristics of adaptive practices in science pertained to experiment guidance. Second, many adaptive practices involving difficulties experienced by students in learning situations were presented, particularly in areas such as numeracy and literacy. Many cases were related to the basic ability of mathematics used as a tool in science learning and understanding scientific terms in Chinese characters. Third, beyond 'experiment guidance', the characteristic adaptive practices of science subjects were related to 'connections between scientific theory and the real world', 'misconception guidance in science', 'cultivation of scientific thinking', and 'convergence approaches'. Fourth, the cases of adaptive practice presented by the science teachers differed by school level and major; therefore, it is necessary to consider school level or major in future research related to adaptive practice. Fifth, most of the adaptive action items with a small number of cases were adaptive actions executed from a macroscopic perspective, so it is necessary to pay attention to related professionalism. Finally, based on the results of this study, the implications for science education were discussed.

Effectiveness and Relationship Analysis of Chemistry Programs Based on Metacognitive Learning Strategies Using Realistic Contents for Pre-service Teachers (예비교사를 위한 실감형 콘텐츠 활용 메타인지 학습전략 기반 화학 프로그램의 효과 및 관계성 분석)

  • Da Eun Lee;Hyun-Kyung Kim
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.4
    • /
    • pp.271-280
    • /
    • 2023
  • The purpose of this study is to investigate the effect of chemistry program based on metacognitive learning strategies using realistic contents on prospective teachers' creative thinking skills and science core competencies, and their perception. In particular, it was intended to further improve the effectiveness of the program by introducing a strategy to strengthen metacognition. Participants were classified into the experimental group subject to the newly developed chemistry curriculum and traditional group subject to general programs that exclude realistic contents and metacognitive strategies. Both groups were surveyed before and after the application of the program to measure the degree of change in metacognitive competencies, creative thinking competencies, and science core competencies. It also analyzed the impact of metacognitive competencies and science core competencies on creativity thinking competencies. As a result of the study, relevance and rationality among sub-factors of metacognitive competencies and creative thinking competencies of the experimental group were improved, and all sub-factors except for scientific participation and lifelong learning ability among science core competencies were significantly improved. In addition, it was found that metacognitive knowledge among metacognitive competencies, scientific inquiry ability and scientific thinking ability among science core competencies affect creative thinking competencies. Through the results, it was suggested that realistic content that incorporates metacognitive learning strategies is needed to improve creative thinking competencies, and learning models and programs that can utilize them are needed.

Research on Pre-Service Science Teachers' Understanding of and Problem-Solving Ability with Regard to Chemistry Concepts (예비 과학 교사의 화학 개념에 대한 이해도와 문제 해결 능력 조사)

  • Choi, Won-Ho;Yoon, Hyeo-Seon
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.5
    • /
    • pp.617-627
    • /
    • 2012
  • We investigated pre-service science teachers' understanding of and problem-solving ability with regard to chemistry concepts in the high school curriculum. For this purpose, we used related certain items and analyzed the results. We found that in the case of all items, some pre-service science teachers, who do not have clear concepts, selected incorrect answers. The in-depth interviews we conducted with the participants revealed some of the causes for the results obtained. First, although pre-service science teachers have better concepts as compared to high school students, they have the same misconceptions as students with regard to some concepts. Second, although they are familiar with the general definitions or meanings of scientific concepts, they do not understand the specific content that is emphasized in the curriculum. Moreover, they tend to solve problems by the information visually conceived. Third, although they know the necessity of general concepts related to problem solving, they sometimes fail to apply inquiry skills and tend to suggest concepts from the higher education curriculum that are not helpful for solving problems.

Characteristics of Learning Contents and Activities According to the Invention Education Managerial System for the Gifted at Elementary School Level (발명영재교육 운영체제별 초등 발명영재 수업내용 및 수업활동 분석)

  • Maeng, Hee-Ju;Seo, Hae-Ae
    • Journal of Korean Elementary Science Education
    • /
    • v.29 no.1
    • /
    • pp.1-12
    • /
    • 2010
  • The purpose of this study is to analyze elementary school students' class contents and activities between the invention class for the gifted under the local education office by the 'Gifted Education Promotion Act' and that under the invention classroom by the 'Invention Promotion Act'. For this study, the survey was conducted to 1,788 elementary school students who attended the invention class for the gifted both under the local education office and under the invention classroom. The analysis of the survey showed that the students of the invention class for the gifted under the local education office had higher motivation and participation rate in class, higher interest in invention, and stronger significantly in a future oriented will than those under the invention classroom. The parents of the invention class for the gifted under the local education office showed more enthusiastic attitude to support their students, and had significantly stronger recognition that the participation of the students in the invention education for the gifted helped enter an advanced school than those under the invention classroom. However, the class contents of the invention class for the gifted under the local education office such as 'understanding the influence of the invention history and products on society', 'scientific inquiry skills for problem solving', 'technological and engineering abilities for creating an invention', 'developing knowledge and abilities about business and management by using a new invention' were not different from those under the invention classroom. In addition, discussion and presentation were not active in the class activities of the invention class for the gifted under the local education office. Therefore, the researchers should compensate and develop a program which can apply strategically differentiated class contents and class activities to the students who participate in the invention class for the gifted under the local education office by the 'Gifted Education Promotion Act'.

  • PDF

Analysis of the Curriculum for the Science Gifted Education Center Based on the Core Competency of Gifted Students (과학 영재 핵심 역량 기반의 과학영재교육원 교육 내용 분석)

  • Kim, Heekyong;Lee, Bongwoo
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1338-1346
    • /
    • 2018
  • The purpose of this study is to analyze the curriculum of a university-affiliated science gifted education center based on the core competencies and to suggest a direction for improving the education at the gifted education center. For this purpose, we set the 12 core competencies as follows: 6 cognitive competencies such as knowledge, creativity, scientific thinking ability, inquiry ability, problem solving ability and fusion ability, and 6 non-cognitive competencies such as task commitment, self-directed learning ability, motivation reinforcement and challenge, communication skills, collaboration ability and leadership. The curricula of the science gifted education centers reflect all the competencies, but some competencies are only potentially included in the contents of the programs. In this study, we present examples of education programs by each competences and suggest additional descriptions for the development of gifted education centers.

The Effects of Lessons with the Application of Drawing Tasks on Changes in Conception among Gifted Science Students (드로잉 과제 활용 수업이 과학 영재들의 개념변화에 미치는 효과)

  • Kim, Soon-Shik;Choi, Sung-Bong
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.3 no.2
    • /
    • pp.99-108
    • /
    • 2010
  • This study lays its purpose on examining the effects of lessons with the application of drawing tasks on changes in conception among gifted science students. The lesson with the application of drawing tasks means the lesson where students express key concepts regarding lesson subjects in drawings which are then applied to the lessons to develop conception among the learners. This study analyzed the effectiveness of lessons by comparing conception scores before and after experiments between an experiment group with the application of drawing tasks and a control group with normal lessons for the gifted in general for 8 months from March to October, 2008. In addition, the researcher examined how the effectiveness of the developed lessons show differently according to levels of meta-cognition, creative problem-solving abilities, and scientific inquiry skills among the gifted students. The results from this study are as the following. First, lessons with the application of drawing tasks were effective in changing conception among the gifted science students. It is possibly because in the process where one student compare his/her own drawings with the others' ones and discuss them, changes in conception occurred effectively among the learners. Second, it was revealed that lessons utilizing drawing tasks have equal effects on changes in conception among both student groups irrespective of their levels of meta-cognition. Accordingly the lesson for changing perceptions utilizing drawing tasks developed in this study is a program which can be applied to all gifted science students in order to change conception among them. Third, lessons utilizing drawing tasks have the greatest effects on the gifted science students at a 'middle' level of creative problem solving abilities. Fourth, lessons utilizing drawing tasks have the greatest effects on the gifted science students at a 'middle' level of scientific inquiry skills. Putting these results together, it is thought that if lessons utilizing drawing tasks are applied to gifted science students, not only their concepts would be changed effectively but also their attitudes toward science would be changed positively.

  • PDF

Effectiveness of Decision-Making Skills in SSI Class Based on Debate by Utilizing SNS in Terms of Students' Personality Traits (SSI 토론 수업에서 SNS 활용이 성격특성별 의사결정능력에 미치는 효과)

  • Jang, Seoyoon;Cha, Heeyoung;Park, Hyemin;Park, Chuljin
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.5
    • /
    • pp.757-768
    • /
    • 2016
  • This study developed an SSI (Socio-Scientific Issue) discussion program that applies a creative technique called six thinking hats, and then investigated the differences in argumentation patterns and effects on the decision-making abilities of each character feature of students between SNS debate and existing face to face debate. There were three SSI themes - Designer Babies, embryonic stem cell study, and legitimacy of abortion. Students were divided into two groups, the debate group using SNS and face to face debate group. The character patterns of students were divided to 'extraversion,' 'agreeableness,' and 'conscientiousness' through test sheets for character features for each student. Both groups were educated for creative discussion methods using six thinking hats and then, the class progressed. As a result of analyzing argumentation patterns used in SNS debate and face to face debate, the most used argumentation pattern was the "cause pattern." But comparing to face to face debate, other patterns (mark, inference, authority, motive) were also used in SNS debate. The study analyzed three factors of decision-making ability for each character feature of students such as complexity, perspectives, and inquiry. As a result, for 'complexity' factor, there was a significant difference between SNS debate group and face to face debate group only in the student group of Agreeableness. For 'perspectives' factor, there were significant differences between SNS debate group and face to face debate group in all three characters. Finally, for inquiry, there were no significant differences between SNS debate group and face to face debate group in all three characters. Accordingly it would be necessary to apply SNS debate using the six thinking hats in SSI education to enhance perspectives.

The Effect of Writing a Weekly Report on the Self-directed Learning, Attitude toward science, and Academic achievement (주 단위 보고서 작성이 자기 주도적 학습 능력과 과학에 대한 태도 및 학업 성취도에 미치는 영향)

  • Kim, Mijung;Woo, AeJa
    • Journal of Science Education
    • /
    • v.39 no.2
    • /
    • pp.165-179
    • /
    • 2015
  • In this study, the effects of writing a weekly report on the students' self-directed learning, the attitudes toward science, and the academic achievements were examined. Two hundred and three students, second graders of a high school participated. Experimental group performed writing a weekly report, while the comparative group performed regular science lessons. The results of this study are as follows: First, MSLQ test showed that there was statistically significant difference in the self-directed learning skills(p<.05). For sub-factors of motivation region, such as internal goals, extrinsic goals, learning beliefs, task value, and self-efficacy and for sub-factors of learning strategy region, such as meta-cognition, peer learning, time management, critical thinking, and demonstrations showed statistically significant results. Second, TOSRA test showed that there was no statistically significant difference in the attitudes toward science (p>.05). However, for sub-factors, such as scientific inquiry and joy to science class showed statistically significant results. Third, there was no statistically significant difference in the academic achievement in Chemistry I class (p>.05). However, top and low achievement level showed statistically significant results.

  • PDF

Effects of Out-of-school STEAM Programs Based on Social-Emotional Learning (사회정서학습 기반의 학교 밖 STEAM 프로그램의 효과)

  • Lee, Hyunjoo;Lee, Soo-Yong;Jung, Jaeeun;Lee, Saebyoul;Choi, Eunhye;Kwak, E-Rang;Kim, Younghwa;Chang, Hyewon
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.4
    • /
    • pp.740-753
    • /
    • 2022
  • This study was conducted to develop and apply an out-of-school STEAM program model based on Social-Emotional Learning (SEL) for underprivileged students in the lower grades. To this end, a STEAM program based on SEL was developed, with the following characteristics. First, by integrating traditional STEAM learning elements and SEL elements, a structured program was designed with consistent stages, including mindfulness meditation→present an authentic situation→creative design→emotional experiences→reflection. Second, the program was structured so that elementary school students could develop mathematical thinking and scientific inquiry skills in problem-solving situations in daily life. Third, the detailed themes for each STEAM program involved storytelling-based problem situations, as well as activities centered on play and sympathy to reflect the educational needs of underprivileged students. From these characteristics, a total of five programs were developed and applied to 16 teachers and 354 lower-grade elementary school students in 16 community children centers nationwide. The results were as follows. First, while students' satisfaction with the STEAM program was 4.16, there were no significant differences in STEAM satisfaction according to gender. Second, while all students' interest and self-efficacy, which was one of sub factors of STEAM attitude, were significantly improved, no significant difference was seen in STEAM attitudes according to gender. Third, although students' SEL competencies were not significantly improved, relationship skills, which were among the sub factors of SEL competencies, were significantly improved, and there were no significant differences in SEL competencies according to gender. From these results, a discussion on the effect of the out-of-school STEAM program for underprivileged students and directions for follow-up studies was suggested.

A Meta-Analysis on the Effects of Integrated Education Research (통합교육의 효과에 대한 메타분석)

  • Kim, Jiyoung;Park, Eunmi;Park, Jieun;Bang, Dami;Lee, Yoonha;Yoon, Heojoeng
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.3
    • /
    • pp.403-417
    • /
    • 2015
  • The purpose of this study was to investigate the effectiveness of integrated education research conducted in Korea and to propose a meaningful discussion for further research. Among the studies conducted for last three years, the relevant 161 research articles were selected, and 236 effect sizes were calculated. Effect sizes were analyzed with different dependant variables including creativity, problem solving ability, academic achievement, inquiry skills, creative personality, scientific attitude, and interests. In addition, effect sizes with different moderating variables, such as characteristics of subjects, sample sizes, class types, core disciplines and publication types, were compared. The results are as follows: The overall effect size of integrated education program produced a huge effect (effect size=0.88, U3=81.06%). Integrated education program showed the highest effect size on scientific attitude among other dependant variables. However, all of the other dependant variables represented more than medium size effect size. Integrated program proved to be more effective on kindergarten pupils and gifted students compared to other school levels and regular students. The effect size for group of less then thirty students were larger than other groups. Programs implemented in after school hours were more effective than in regular school hours. Considering the core subject of program, arts-centered integrated programs showed the largest effect size, while all the others showed above medium effect sizes. Finally, doctoral dissertation showed the highest effect size compared to master's thesis and academic journal articles. Conclusions and recommendations for further research were provided.