• Title/Summary/Keyword: School buildings

Search Result 1,664, Processing Time 0.025 seconds

The Efficiency of Steel Brace Strengthening of School Buildings according to the Failure Mode of Columns (기둥 파괴모드에 따른 학교 건물 철골 가새 보강의 효율성)

  • Lee, Hee Seop;Kim, Taewan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.101-109
    • /
    • 2023
  • Steel brace strengthening is the most popular seismic rehabilitation method for school buildings. This is because the design can be conducted by using relatively easy nonlinear pushover analysis and standard modeling in codes. An issue with steel brace strengthening is that the reinforced building should behave elastically to satisfy performance objectives. For this, the size of steel braces should be highly increased, which results in excessive strengthening cost by force concentration on existing members and foundations due to the considerable stiffness and strength of the steel braces. The main reason may be the brittle failure mode of columns, so this study investigated the relationship between the efficiency of steel brace strengthening and column failure modes. The result showed that the efficiency is highly dependent on the shear capacity ratio of columns and structural analysis methods. School buildings reinforced by steel braces do not need to behave elastically when the shear capacity ratio is low, and pushover analysis is used, which means reducing steel material is possible.

A Study for the Planning of Elementary School's Exterior Space according to the Changes in Business Models (사업방식변화에 따른 초등학교 외부공간 계획에 관한 연구)

  • Heo, Byung-Iee;Seo, Sang-Hyun
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.9 no.3
    • /
    • pp.12-19
    • /
    • 2010
  • School design in the future will be more important on exterior space plan. However, there is no specific definition or boundary regarding exterior space, and related regulations and guides define the essential factors only. The purpose of this study is to have a guideline for the concept of exterior space in elementary school buildings, and deducted strong and weak points by evaluating exterior space based on each business methods. A result of this study can be suggest what improvements should be made on exterior space design of elementary school buildings by comparative analysis of positive and weak points for each evaluation factors.

A Study on the Linkage between the Kindergarten and The Lower Level Elementary School Buildings (유치원(幼稚園)과 국민학교(國民學校) 저학년(低學年) 건축(建築)의 연계성(連繫性)에 관(關)한 연구(硏究))

  • Yoon, Chun-Keun
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.2 no.2
    • /
    • pp.51-64
    • /
    • 1995
  • This study investigates possible of linkage between kindergarten infants and the lower level elementary school students so aims to take a triangular position which direction of architectural space plan. The results of the study are as follows: 1) The results of analysis which infants and lower level elementary school students' behavior and activity showed similar play patterns in space attitude, rule of space use, similar to satisfaction and kinds of play, the time required, groups scale and place of play. 2) Architectures of kindergarten and lower level elementary school can classify style of selfhelp-singleness, establishment as an annex-singleness, establishment as an annex-attachment and divides space of education, management, service and analogized kinds of necessary space. 3) Infants of four, five years old and six, seven years old(first, second elementary school students) are similar to physical, intellectual, emotional development and have special characters of successions so kindergarten and lower level elementary school buildings must be necessary for organic linkage and intergration.

  • PDF

A retrofitting method for torsionally sensitive buildings using evolutionary algorithms

  • Efstathakis, Nikos C.;Papanikolaou, Vassilis K.
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.309-319
    • /
    • 2017
  • A new method is suggested for the retrofitting of torsionally sensitive buildings. The main objective is to eliminate the torsional component from the first two natural modes of the structure by properly modifying its stiffness distribution via selective strengthening of its vertical elements. Due to the multi-parameter nature of this problem, state-of-art optimization schemes together with an ad-hoc software implementation were used for quantifying the required stiffness increase, determine the required retrofitting scheme and finally design and analyze the required composite sections for structural rehabilitation. The performance of the suggested method and its positive impact on the earthquake response of such structures is demonstrated through benchmark examples and applications on actual torsionally sensitive buildings.

An Experimental Investigation on Combustion Characteristics of the Knockdown Building (조립식 건축물의 화재특성연구)

  • Lee, Jung-Yun;Kim, Hong
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.3
    • /
    • pp.30-35
    • /
    • 2008
  • The recent fire incident in an elementary school of Chonan city causes the media focus on the fire safety of residential container buildings. In this study, real fire tests were conducted in this kind of buildings. Combustion products including $O_2$, $CO_2$, CO, $NO_x,$, $SO_x$, HCI, HCN were measured, in order to investigate the hazard-reduction effects of employing gas mask protected with filter during the fire emergency of residential container buildings. According to the test results, whether or not employing the filter showed a sheer difference in the toxicity of the fire-induced gases, and then the importance of wearing a gas mask was evidently demonstrated.

An Experimental Study on Characteristics of the Residential Container Building Fire (주거용 컨테이너 화재 특성에 관한 실험적 고찰)

  • Lee, Jung-Yun;Jung, Ki-Chang;Kim, Hong
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.1
    • /
    • pp.24-27
    • /
    • 2008
  • The recent fire incident in an elementary school of Chonan city causes the media focus on the fire safety of residential container buildings. In this study, real fire tests were conducted in this kind of buildings. Fire temperature and radiant heat flux were measured, in order to investigate the hazard-reduction effects during the fire emergency of residential container buildings. According to the test results, flash over occur in 10 minutes, peak fire temperature was $935.5^{\circ}C$, peak radiant heat flux was $24.99kW/m^2$ at 8minutes after residential container building fire.

Analysis on the Heat load Pattern According to Ratio of the Heat Consumers in District Heating (지역난방 열사용자 비율별 열부하 패턴변화 분석: 공동주택과 건물)

  • Lee, Hoon;Lee, Yoon-Pyo;Kim, Lae-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.3
    • /
    • pp.123-129
    • /
    • 2010
  • The district heating users can be generally classified into two groups such as apartments and buildings. In consideration that the time zone of the maximum heat load for apartments is different from those of buildings during a day, the maximum heat supply range is presented. In case of the investigated area, the maximum heat supply is occurred at the ratio between apartments and buildings that is 65%:35%. Thus the heat supply range is increased as much as 15% if the time zone when the maximum heat load is occurred is considered.

Wind pressure characteristics for a double tower high-rise structure in a group of buildings

  • Tse, K.T.;Wang, D.Y.;Zhou, Y.
    • Wind and Structures
    • /
    • v.16 no.5
    • /
    • pp.491-515
    • /
    • 2013
  • Wind pressure characteristics on a double tower high-rise structure, which is disturbed by surrounding buildings, were investigated using large eddy simulation (LES) and 1:300 scale wind tunnel experiments. The computational simulation technique and wind tunnel experimental technique were described in detail initially. Comparisons of computational results with the experimental data have subsequently been carried out to validate the reliability of LES. Comparisons have been performed in detail for the mean and fluctuating pressure coefficients. Detailed explanations of each comparison were given in the paper. To study further on the pressure coefficients on the building surfaces, parametric studies on shape coefficient and spatial correlation were performed and investigated. The numerical and experimental results presented in this paper advance understanding on wind field around buildings and the application of LES and wind tunnel tests.

The significance of removing shear walls in existing low-rise RC frame buildings - Sustainable approach

  • Keihani, Reza;Bahadori-Jahromi, Ali;Goodchild, Charles
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.563-576
    • /
    • 2019
  • According to The Concrete Centre, in the UK shear walls have become an inseparable part of almost every reinforced concrete frame building. Recently, the construction industry has questioned the need for shear walls in low to mid-rise RC frame buildings. This study tried to address the issue in two stages: The first stage, the feasibility of removing shear walls in an existing design for a residential building where ETABS and CONCEPT software were used to investigate the structural performance and cost-effectiveness respectively. The second stage, the same structure was examined in various locations in the UK to investigate regional effects. This study demonstrated that the building without shear wall could provide adequate serviceability and strength within the safe range defined by Eurocodes. As a result, construction time, overall cost and required concrete volume are reduced which in turn enhance the sustainability of concrete construction.