• Title/Summary/Keyword: Schizandrin-A

Search Result 40, Processing Time 0.026 seconds

Effects of anti-inflammation and cell protection through biphenyl dimethyl dicarboxylate on Rat Microglia

  • Joo, Seong-Soo;Kang, Hee-Chul;Lee, Do-Ik
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.132.1-132.1
    • /
    • 2003
  • Biphenyl dimethyl dicarboxylate (DDB) is a by-product produced in process of synthesizing Schizandrin-C. Generally, DDB has known to protect hepatocytes and to decrease the index of liver enzyme (e.g. GOT and GPT) in chronic hepatitis. The present study was aimed to demonstrate whether DDB can protect the brain cell, especially the Alzheimer brain in vitro. As Alzheimers disease can be induced by activated microglia, a macrophage in the brain, through Abeta peptide (A$\beta$) produced from amyloid precursor protein (APP). (omitted)

  • PDF

Quality Evaluation of Herbal Prescription, Oc Chun San, Employing Simultaneous Determination of the Marker Compounds by HPLC (HPLC를 이용한 옥천산 중 갈근, 감초, 오미자 지표성분의 다성분 동시분석)

  • Yoo, Jeong-Lim;Jang, Dae-Sik;Kim, Jin-Sook
    • Korean Journal of Oriental Medicine
    • /
    • v.11 no.2
    • /
    • pp.167-178
    • /
    • 2005
  • As a part of the quality control of herbal prescriptions which has been used for diabetes and related diseases, a reversed-phase liquid chromatographic method was developed for the simultaneous quantification of the three marker compounds, puerarin (Puerariae Radix), glycyrrhizin (Glycyrrhizae Radix), schizandrin (Schizandrae Fructus) in Oc Chun San. The HPLC analysis method was validated for parameters such as linearity, Limits of Detection(LOD), quantification(LOQ), repeatability, stability and recovery.

  • PDF

Gomisin J with Protective Effect Against t-BHP-Induced Oxidative Damage in HT22 Cells from Schizandra chinensis

  • An, Ren-Bo;Oh, Seung-Hwan;Jeong, Gil-Saeng;Kim, Youn-Chul
    • Natural Product Sciences
    • /
    • v.12 no.3
    • /
    • pp.134-137
    • /
    • 2006
  • Four lignan compounds including gomisin J (1), schizandrin (2), gomisin A (3), and angeloyl gomisin H (4) have been isolated from the MeOH extract of Schizandra chinensis fruits. The evaluation for protective effect of compounds 1-4 against tert-butyl hydroperoxide (t-BHP)-induced cytotoxicity in hippocampal HT22 cell line was conducted. Compound 1 showed significant protective effect with an $EC_{50}$ value of $43.3{\pm}2.3\;{\mu}M$, whereas compounds 2-4 were inactive. Trolox, one of the well-known antioxidant, used as a positive control, and also showed protective effect with an $EC_{50}$ value of $213.8{\pm}8.4\;{\mu}M$. These results suggest that compound 1 may possess the neuroprotective activity against oxidant-induced cellular injuries.

Dermal Papilla Cells Proliferation Constituent of Schisandra chinensis Fruits and Optimization Using Response Surface Methodology (오미자의 모유두세포 증식 활성성분과 반응표면분석을 이용한 추출조건의 최적화)

  • Cho, Hyun Dae;Jeong, JiYeon;Ryu, Hwa Sun;Lee, JungNo;Park, Sung-Min
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.4
    • /
    • pp.415-424
    • /
    • 2020
  • In the present study, we have refined gomisin N, which represents activity in the proliferation of dermal papilla cells (HFDPCs) from the fruit of Schisandra chinensis (S. chinensis), and have identified optimal extraction conditions for obtaining extracts with high content of gomisin N. The activity of the extracts and fractions was evaluated, and the results indicated approximately 29% proliferation activity in the group treated with 1 ㎍/mL of n-hexane fraction. Column chromatography was used to assess the active ingredient in the n-hexane fraction, and two compounds, namely gomisin N(1) and schisandrin(2), were isolated and identified. When the HFDPCs proliferation activity was tested for the isolated compounds, gomisin N exhibited ≥ 20% proliferation activity. Thus, via response surface methodology (RSM), the optimum extraction conditions to obtain the maximum level of gomisin N from the fruit of S. chinensis were determined, where ethanol proportion, extraction time, and extraction temperature were used as the independent variables. The results revealed coefficient of determination ≥ 0.95 and p-value ≤ 0.05, which confirmed the fit of the model. The optimum extraction conditions to achieve the maximum content of gomisin N were as follows: ethanol proportion 83.8%, extraction temperature 80 ℃, and extraction time 8.7 h. The content of gomisin N using these conditions was predicted as 378,300 ppm, and a mean value close to the predicted value (376,884 ppm) was obtained while validating the aforementioned conditions.

Characteristic Effects of Dangnyo-hwan for Diabetes Control Studied Using LC-MS/MS and ICP (LC-MS/MS 및 ICP를 이용한 당뇨환의 화학적 특성 분석)

  • In, Jeong-do;Im, Dai-sig;Moon, Seung-ho;Ki, Won-ill
    • The Journal of Internal Korean Medicine
    • /
    • v.36 no.3
    • /
    • pp.217-227
    • /
    • 2015
  • Objectives: The primary aim of this study was to identify bioactive compounds in Dangnyo-hwan, a Korean herbal medicine, through instrumental analysis using LC-MS/MS and ICP, and investigate its potential use in diabetes treatment. Methods: The extract of Dangnyo-hwan has 12 medicinal herbs; these were compared with 18 marker substances selected from literature survey. Results: LC-MS/MS analysis could detect 9 of the 18 bioactive compounds: citruline, catalpol, berberine, ginsenoside Rb1, ginsenoside Rg1, oleanolic acid, β-sitosterol, mangiferin, and schizandrin. While harmful heavy metals such as As, Pb, Cd, Hg, Ni, and Cu were not present in high concentrations, Zn concentration was 4.2 mg in 100 g Dangnyo-hwan. Conclusions: Instrumental analysis such as LC-MS/MS and ICP was successfully used to identify bioactive compounds in Dangnyo-hwan. Detection of 9 bioactive substances and Zn from the herb medicine is a valuable finding, and suggests that Dangnyo-hwan is a candidate medicine for diabetes. Further investigations like in vitro assay, percent GPR 119 activity, and percent human DGAT-1 inhibition are underway.

Effect of Biphenyl Dimethyl Dicarboxylate on Cytochrome $P_{450}$ 1A1 and 2B1 and ${CCl_4}-Induced$ Hepatotoxicity in Rat Liver (Biphenyl Dimethyl Dicarboxylate가 간내 Cytochrome $P_{450}$ 1A1과 2Bl 및 $CCl_4$ 유도 간독성에 미치는 영향)

  • 김순선;오현영;김학림;양지선;김동섭;신윤용;최기환
    • YAKHAK HOEJI
    • /
    • v.43 no.6
    • /
    • pp.827-833
    • /
    • 1999
  • In this study, we have investigated the effect of Biphenyl Dimethyl Dicarboxylate (DDB), a synthetic analogue of Schizandrin C isolated from Schizandrae Fructus on cytochrome $P_450$ lAl and 2Bl, and the protective mechanism against $CCl_4-induced$ hepatotoxicity in rat liver. After DDB was administered into male rats for different periods of time (1~7 days) and with different doses (25, 50, 100 and 200 mg/kg), mRNA levels of CYPlAl were measured by polymearse chain reaction (PCR) and assayed the activities of CYPlAl specific ethoxyresorufin-O-dealkylase (EROD) and CYP2Bl specific benzyloxyresorufin-O-dealkylase (BROD). DDB treatment resulted in increase in CYP2Bl mRNA level and BROD activity, whereas there was no change in CYPlAl mRNA level and EROD activity. This effect of DDB was time-and dose-dependent and reached maximal level by 3 day and 200 mg/kg treatment. In addition, rats were pre-treated with DDB at doses of 25, 50 or 100 mg/kg daily for 4 days, 3-hr after final treatment on the 4th day, $CCl_4$ 0.3ml/kg was intraperitonially injected into the rats to examine the effect of DDB on $CCl_4-induced$ hepatic injury. Serum levels of ALT and AST were determined and histopathological examination was done in rat liver. Furthermore, we have measured hepatic microsomal malondialdehyde(MDA) level, a parameter of lipid peroxidation. Based on serum ALT level and lipid peroxidation, pretreatment of DDB, 50 mg/kg appeared the most protective effect against $CCl_4-induced$ heapatotoxity. These results indicate that DDB stimulates CYP2Bl mRNA level and BROD activity in time and dose dependent manner and suggest that protective effect of DDB on $CCl_4-induced$ hepatotoxicity may be mediated through free radical scavenging.

  • PDF

Review of Anti-Leukemia Effects from Medicinal Plants (항 백혈병작용에 관련된 천연물의 자료조사)

  • Pae Hyun Ock;Lim Chang Kyung;Jang Seon Il;Han Dong Min;An Won Gun;Yoon Yoo Sik;Chon Byung Hun;Kim Won Sin;Yun Young Gab
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.3
    • /
    • pp.605-610
    • /
    • 2003
  • According to the Leukemia and Lymphoma Society, leukemia is a malignant disease (cancer) that originates in a cell in the marrow. It is characterized by the uncontrolled growth of developing marrow cells. There are two major classifications of leukemia: myelogenous or lymphocytic, which can each be acute or chronic. The terms myelogenous or lymphocytic denote the cell type involved. Thus, four major types of leukemia are: acute or chronic myelogenous leukemia and acute or chronic lymphocytic leukemia. Leukemia, lymphoma and myeloma are considered to be related cancers because they involve the uncontrolled growth of cells with similar functions and origins. The diseases result from an acquired (not inherited) genetic injury to the DNA of a single cell, which becomes abnormal (malignant) and multiplies continuously. In the United States, about 2,000 children and 27,000 adults are diagnosed each year with leukemia. Treatment for cancer may include one or more of the following: chemotherapy, radiation therapy, biological therapy, surgery and bone marrow transplantation. The most effective treatment for leukemia is chemotherapy, which may involve one or a combination of anticancer drugs that destroy cancer cells. Specific types of leukemia are sometimes treated with radiation therapy or biological therapy. Common side effects of most chemotherapy drugs include hair loss, nausea and vomiting, decreased blood counts and infections. Each type of leukemia is sensitive to different combinations of chemotherapy. Medications and length of treatment vary from person to person. Treatment time is usually from one to two years. During this time, your care is managed on an outpatient basis at M. D. Anderson Cancer Center or through your local doctor. Once your protocol is determined, you will receive more specific information about the drug(s) that Will be used to treat your leukemia. There are many factors that will determine the course of treatment, including age, general health, the specific type of leukemia, and also whether there has been previous treatment. there is considerable interest among basic and clinical researchers in novel drugs with activity against leukemia. the vast history of experience of traditional oriental medicine with medicinal plants may facilitate the identification of novel anti leukemic compounds. In the present investigation, we studied 31 kinds of anti leukemic medicinal plants, which its pharmacological action was already reported through many experimental articles and oriental medical book: 『pharmacological action and application of anticancer traditional chinese medicine』 In summary: Used leukemia cellline are HL60, HL-60, Jurkat, Molt-4 of human, and P388, L-1210, L615, L-210, EL-4 of mouse. 31 kinds of anti leukemic medicinal plants are Panax ginseng C.A Mey; Polygonum cuspidatum Sieb. et Zucc; Daphne genkwa Sieb. et Zucc; Aloe ferox Mill; Phorboc diester; Tripterygium wilfordii Hook .f.; Lycoris radiata (L Her)Herb; Atractylodes macrocephala Koidz; Lilium brownii F.E. Brown Var; Paeonia suffruticosa Andr.; Angelica sinensis (Oliv.) Diels; Asparagus cochinensis (Lour. )Merr; Isatis tinctoria L.; Leonurus heterophyllus Sweet; Phytolacca acinosa Roxb.; Trichosanthes kirilowii Maxim; Dioscorea opposita Thumb; Schisandra chinensis (Rurcz. )Baill.; Auium Sativum L; Isatis tinctoria, L; Ligustisum Chvanxiong Hort; Glycyrrhiza uralensis Fisch; Euphorbia Kansui Liou; Polygala tenuifolia Willd; Evodia rutaecarpa (Juss.) Benth; Chelidonium majus L; Rumax madaeo Mak; Sophora Subprostmousea Chunet T.ehen; Strychnos mux-vomical; Acanthopanax senticosus (Rupr.et Maxim.)Harms; Rubia cordifolia L. Anti leukemic compounds, which were isolated from medicinal plants are ginsenoside Ro, ginsenoside Rh2, Emodin, Yuanhuacine, Aleemodin, phorbocdiester, Triptolide, Homolycorine, Atractylol, Colchicnamile, Paeonol, Aspargus polysaccharide A.B.C.D, Indirubin, Leonunrine, Acinosohic acid, Trichosanthin, Ge 132, Schizandrin, allicin, Indirubin, cmdiumlactone chuanxiongol, 18A glycyrrhetic acid, Kansuiphorin A 13 oxyingenol Kansuiphorin B. These investigation suggest that it may be very useful for developing more effective anti leukemic new dregs from medicinal plants.

Evaluation of a Schzandrin C Derivative DDB-mixed Preparation(DWP-04) on Acetaminophen Detoxification Enzyme System in the Animal Model (오미자 Schizandrin C 유도체 DDB 복합물 DWP-04가 Acetaminophen 해독계에 미치는 영향)

  • Park, Hee-Juhn;Lee, Myeong-Seon;Chi, Sang-Cheol;Lee, Kyung-Tae;Shin, Young-Ho;Choi, Jong-Won
    • Korean Journal of Pharmacognosy
    • /
    • v.36 no.2 s.141
    • /
    • pp.81-87
    • /
    • 2005
  • The effects of the DWP-04 [DDB:selenium yeast:glutathione (31.1 : 6.8 : 62.1 (w/w%)] on acetaminophen detoxification enzyme system were studied in rats. Treatment with DWP-04 was prevented againt acetaminophen-induiced hepatotoxicity in rat as evidenced by the decreased formation of lipid peroxide. Effect of DWP-04 on the activities of free radical-generating enzymes, free radical scavenging enzymes and glutathione-related enzymes as well as detoxification mechanism of DWP-04 against acetaminophen-treated was investigated in rat. Activities of cytochrome p450, cytochrome b5, aminopyrine demethylase and aniline hydroxylase as free radical-generating enzymes activities were decreased by the treatment with DWP-04 against acetaminophen treated. Although acetaminophen-induced hepatotoxicity results in the significantly decrease in the level of hepatic glutathione and activities of glutathine S-transferase, quinone reductase, glutathione reductase and ${\gamma}-glutamyl-$cysteine synthetase, these decreasing effects were markedly lowered in the DWP-04-treated rat. Therefore, it was concluded that the mechanism for the observed preventive effect of DWP-04 against the acetaminophen-induced hepatotoxicity was associated with the decreased activities in the free radical-generating enzyme system.

Studies about the bioactive component analysis and an oral glucose tolerance test of Add-Omit-Saenghyeoryunbu-eum(AO-SHU) for confirmation of diabetes therapy (가감생혈윤부음(加減生血潤膚飮)의 당뇨병 치료효과 확인을 위한 생리활성성분 분석과 경구포도당부하 연구)

  • In, Jeongdo;Im, Daisig;Kim, Won-Ill
    • Herbal Formula Science
    • /
    • v.24 no.2
    • /
    • pp.80-99
    • /
    • 2016
  • Objectives : Instrumental chemical analysis was utilized to investigate the effect of Add-Omit-Saenghyeoryunbu-eum(AO-SHU) on diabetic treatment. One of the most exciting, yet also controversial, arguments is the safety and biological mechanisms of the natural medicine on human body. Therefore, the aim of this study is to provide a better understanding on bioactive chemical components, hazards of heavy metal contamination and biological mechanism of the diabetic medicine composed of 12 different natural herbs. Methods : To study bioactive compound and metallic component in the diabetic medicine in detail, LC-MS/MS (Liquid Chromatography-Mass/Mass), GC (Gas Chromatography) and ICP (Inductively Coupled Plasma) were utilized to characterize the extract of the diabetic medicine and the result was compared with 18 marker substances selected from literature survey. In addition, in vitro assay experiments including GPR 119 activity and human DGAT-1 inhibition, and OGTT (Oral Glucose Tolerance Test) were performed to verify the effectiveness of this medicine on diabetic treatment. Results : Out of 18 marker substances, 9 bioactive compounds were identified from LC-MS/MS analysis which include Citruline, Catalpol, Berberine, Ginsenoside Rb1, Ginsenoside Rg1, Oleanolic acid, β-Sitosterol, Mangiferin, and Schizandrin. ICP study on 245 residual pesticides revealed that 239 species were not detected but 6 species, Dimethomorph, Trifloxystrobin, Pyraclostrobin, Isoprocarb, Carbaryl and Flubendiamide, while the amounts are trace levels, below permitted concentrations. The biological activity was observed in vitro assay and Oral Glucose Tolerance Test(OGTT), which are consistent with a preliminary clinical test result, a drop in blood sugar level after taking this herbal medicine. Conclusions : Instrumental chemical analysis using LC-MS/MS, GC, and ICP was conducted successfully to identify bioactive compounds in AO-SHU for the treatment of diabetes, finding 9 bioactive compounds. Furthermore, in vitro assay experiments and OGTT show that AO-SHU has its biological activities, which imply that it can be a candidate for the future diabetes remedy.

Schizandra chinensis Alkaloids Inhibit Lipopolysaccharide-Induced Inflammatory Responses in BV2 Microglial Cells

  • Choi, Min-Sik;Kwon, Kyung-Ja;Jeon, Se-Jin;Go, Hyo-Sang;Kim, Ki-Chan;Ryu, Jae-Ryun;Lee, Jong-Min;Han, Seol-Heui;Cheong, Jae-Hoon;Ryu, Jong-Hoon;Bae, Ki-Hwan;Shin, Chan-Young;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.47-56
    • /
    • 2009
  • Schizandra chinensis (S. chinensis) exhibits a harmless, 'adaptogen-type' effect leading to improvements in mental performance and learning efficacy in brain. Activated microglia contributes to neuronal injury by releasing neurotoxic products, which make it important to regulate microglial activation to prevent further cytological as well as functional brain damage. However, the effect of S. chinensis on microglial activation has not been examined yet. We have investigated the effects of four compounds (Gomisin A, Gomisin N, Schizandrin and Schizandrol A) from S. chinensis on lipopolysaccharide (LPS)-induced microglial activation. In this study, BV2 microglial cells were activated with LPS and the microglial activation was assessed by up-regulation of activation markers such as nitric oxide (NO), reactive oxygen species (ROS), and matrix metalloproteinase-9 (MMP-9). The results showed that all four compounds significantly reduced the intracellular level of ROS, the release of NO and MMP-9 as well as LPS-induced phosphorylation of ERK1/2. These results strongly suggested that S. chinensis may be useful to modulate inflammation-mediated brain damage by regulating microglial activation.