• Title/Summary/Keyword: Scattering process

Search Result 434, Processing Time 0.036 seconds

Polarized Raman Scattering Study of Highly(111)-oriented PZT Films in the Rhombohedral-Phase Field

  • 이현정;박정환;장현명
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.174-174
    • /
    • 2003
  • Highly (111)-oriented PZT [Pb(Zrl-xTix)O3] thin films in the Zr-rich rhombohedral phase-field were successfully fabricated on Pt(111)/Ti/SiO2/Si substrates by combining PLD method with sol-gel process. These highly (111)-oriented films can be used as model systems for polarized Raman scattering study of PZT in the rhombohedral-Phase field because the (111)-direction is the principal off-center axis of the rhombohedral ferroelectricity. For this purpose, we have fabricated PZT films employing two distinctive compositions : one with Zr/Ti = 90/10 (abbreviated as PZT90/10) and the other with Zr/Ti= 60/40 (PZT60/40). The PZT90/10 film belongs to the octahedrally distorted FR(LT) phase with a cell-doubled structure, whereas the PZT60/40 is in the high-temperature FR(HT) phase-field at room temperature. To clearly separate E(TO) phonon modes from Al(TO) modes of the (111)-oriented rhombohedral film, we have suitably devised Z(X,Y)Z and Z(X,X)Z backscattering geometries for E(TO) and Al (TO), respectively. The polarized scattering experiment demonstrated that both types of (111)-oriented rhombohedral films closely followed the Raman selection rule.

  • PDF

The Thickness Determination of Silicone Resin on Zinc Electroplated Steels using Compton Scattering (Compton 산란선을 이용한 아연계 전기도금강판 표면의 Slicone Resin Film 두께측정)

  • Jae Chun So;Do Hyung Lee
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.539-544
    • /
    • 1991
  • A method to determine the thickness of silicone resin film on zinc eletroplated steel using X-ray compton scattering was investigated. On the basis of the fact that compton scattering process predominates over photoelectric absorption for the light elements such as C, H, O and Si, the compton scattered line of RhK$_{\alpha}$ was used to determine the thickness of silicone resin. In this method, the standard calibration curve for thickness determination of silicone resin film was found to be linear in the range of 0.2~5.0 ${mu}$m film thickness. The analytical results agreed well with those obtained by the gravimetric method and the accuracy was found to be 0.22 ${mu}$m.

  • PDF

Control of One Dimensional Inverse Scattering Pattern and Its Applications (일차원 역산란 패턴 제어와 그 응용)

  • 최종인;박의준
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.2
    • /
    • pp.291-301
    • /
    • 1999
  • A method for the synthesis of one-dimensional nonlinear distribution function is presented for the desired inverse scattering pattern. This method is based on the inverse transform of the solution of the Riccati equation derived from one-dimensional inverse scattering problem. Since the solution is analogous to the array factor or normalized space factor in collinear array antenna, the synthesis method for field pattern is applied for the construction of the involved line-source nonlinear distribution function. The suggested method is carried out under the optimization process, and is numerically verified by synthesizing the dispersive transmission line profile within the specified frequency band and control of scattered field on resistive strip.

  • PDF

The Observation of Nucleation & Growth during Water Vapor Induced Phase Inversion of Chlorinated Poly(vinyl chloride) Solution using SALS

  • Jang, Jae Young;Lee, Young Moo;Kang, Jong Seok
    • Korean Membrane Journal
    • /
    • v.6 no.1
    • /
    • pp.61-69
    • /
    • 2004
  • Small angle light scattering (SALS) and field emission scanning electron microscope (FE-SEM) have been used to investigate the effects of alcohol on phase separation of chlorinated poly(vinyl chloride) (CPVC)/tetrahydrofuran (THF)/alcohol (9/61/30 wt%) solution during water vapor induced phase separation. A typical scattering pattern of nucleation & growth (NG) was observed for all casting solutions of CPVC/THF/alcohol. In the case of the phase separation of CPVC dope solution containing 30 wt% ethanol or n-propanol, the demixing with NG was observed to be heterogeneous. Meanwhile, the phase separation of CPVC dope solution with 30 wt% n-butanol was found to be predominantly homogeneous NG. Although the different phase separation behavior of NG was observed with types of alcohol additives, the resultant surface morphology had no remarkable differences. That is, even though the NG process by water vapor is either homogeneous or heterogeneous, this difference does not play a main role on the final surface morphology. However, it was estimated from the result of hydraulic flux that the phase separation by homogeneous NG provided the membrane geometry with lower resistance in comparison with that by heterogeneous one.

Application of the Inverse Scattering Theory to the Design of the Tapered Impedance-Matching Line (테이퍼형 임피던스 정합선로의 설계를 위한 역산란 이론의 응용)

  • 송충호;이상설
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.7
    • /
    • pp.1139-1146
    • /
    • 2001
  • A tapered impedance-matching line is designed by an inverse scattering method for the one-dimensional medium. The phase compensation factor(PCF) is introduced in order to reduce the error in the inverse scattering process to reconstruct the permittivity profile. By estimating the permittivity profile of the virtual one-dimensional dielectric medium whose reflection characteristic is the same as that of the specified matching line, the matching line is synthesized. The method can be used to design impedance-matching lines with arbitrary passband characteristics without any equivalent circuit analysis. The inevitable errors in the method using the time-domain reflection coefficient can be avoided by using the frequency-domain reflection coefficient.

  • PDF

Statistical Analysis of the Springback Scatter according to the Material Strength in the Sheet Metal Forming Process (판재성형공정에서의 소재 강도에 따른 스프링백 산포의 통계분석)

  • Son, Min-Kyu;Kim, Se-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.4
    • /
    • pp.287-292
    • /
    • 2022
  • In this paper, the stochastic distribution of the springback amount is investigated for the stamping process of a U-channel shaped-product with ultra-high strength steel. Using the reliability-based design optimization technique (RBDO), stochastic distribution of process parameters is considered in the analysis including material properties and process variation. Quantification of the springback scatters is carried out with the statistical analysis method according to the material strength. It is found that the scattering amount of springback decreases while the amount of springback increases as the tensile strength of the blank material increases, which is investigated by analyzing the strain and stress distribution of the punch and die shoulder. It is noted that the proposed scheme is capable of predicting and responding to the unavoidable scattering of springback in the sheet metal forming process.

The Scattering Beam Measurement of the RBC and the Fabrication of the Micro Cell Biochip (적혈구의 산란빔 측정과 마이크로 세포 분석 바이오칩 제작)

  • Byun, In Soo;Kwon, Ki Jin;Lee, Joon Ha
    • Progress in Medical Physics
    • /
    • v.25 no.2
    • /
    • pp.116-121
    • /
    • 2014
  • Next future, The bio technology will be a rapidly developing. This paper is the scattering beam measurement of the red blood cell (RBC) and the fabrication of the micro cell biochip using the bio micro electro mechanical system (Bio-MEMS) process technology. The Major process method of Bio-MEMS technology was used the buffered oxide etchant (BOE), electro chemical discharge (ECD) and ultraviolet sensitive adhesives (UVSA). All experiments were the 10 times according to the process conditions. The experiment and research are required the ultraviolet expose, the micro fluid current, the cell control and the measurement of the output voltage Vpp (peak to peak) waveform by scattering angles. The transmitting and receiving of the laser beam was used the single mode optical fiber. The principles of the optical properties are as follows. The red blood cells were injected into the micro channel. The single mode optical fiber was inserting in the guide channel. The He-Ne laser beam was focusing in the single mode optical fiber. The transmission He-Ne laser beam is irradiating to the red blood cells. The manufactured guide channel consists of the four inputs and the four outputs. The red blood cell was allowed with the cylinder pump. The output voltage Vpp waveform of the scattering beam was measured with a photo detector. The receiving angle of the output optical fiber is $0^{\circ}$, $5^{\circ}$, $10^{\circ}$, $15^{\circ}$. The magnitude of the output voltage Vpp waveform was measured in the decrease according to increase of the reception angles. The difference of the output voltage Vpp waveform is due differences of the light transmittance of the red blood cells.

FSS Design System Using Genetic Algorithm and Characteristic Data Base (유전알고리즘과 특성 DB를 이용한 FSS 설계 시스템)

  • Lee Ji-Hong;Lee Fill-Youb;Seo Il-Song;Kim Geun-Hong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.4 s.346
    • /
    • pp.58-66
    • /
    • 2006
  • This paper proposes an FSS(Frequency Selective Surface) design system that automatically derives design parameters minimally specified by engineers. The proposed system derives optimal design parameters through theory of electromagnetic scattering on FSS, database implemented from real data obtained from practically manufactured FSS, and GA(Genetic Algorithm) for optimizing design parameters. The system, at the first step, searches the best matching FSS within preconstructed DB with given characteristics specified by operators, and then sets initial genes from the searched FSS parameters. GA iterates the optimization process until the system finds the FSS design parameters that matches the characteristics specified by operators. The theory for the electromagnetic scattering on FSS is verified by comparing the simulation results with real data obtained by measuring system composed of horn antenna and receiver. The process for manufacturing the FSS is also included in the paper.

[Retraction]Characterization of carbon black nanoparticles using asymmetrical flow field-flow fractionation (AsFlFFF)

  • Kim, Kihyun;Lee, Seungho;Kim, Woonjung
    • Analytical Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.77-87
    • /
    • 2019
  • High viscosity carbon black dispersions are used in various industrial fields such as color cosmetics, rubber, tire, plastic and color filter ink. However, carbon black particles are unstable to heat due to inherent characteristics, and it is very difficult to keep the quality of the product constant due to agglomeration of particles. In general, particle size analysis is performed by dynamic light scattering (DLS) during the dispersion process in order to select the optimum dispersant in the carbon black dispersion process. However, the existing low viscosity analysis provides reproducible particle distribution analysis results, but it is difficult to select the optimum dispersant because it is difficult to analyze the reproducible particle distribution at high viscosity. In this study, dynamic light scattering (DLS) and asymmetrical flow field-flow fractionation (AsFlFFF) analysis methods were compared for reproducible particle size analysis of high viscosity carbon black. First, the stability of carbon black dispersion was investigated by particle size analysis by DLS and AsFlFFF according to milling time, and the validity of analytical method for the selection of the optimum dispersant useful for carbon black dispersion was confirmed. The correlation between color and particle size of particles in high viscosity carbon black dispersion was investigated by using colorimeter. The particle size distribution from AsFlFFF was consistent with the colorimetric results. As a result, the correlation between AsFlFFF and colorimetric results confirmed the possibility of a strong analytical method for determining the appropriate dispersant and milling time in high viscosity carbon black dispersions. In addition, for nanoparticles with relatively broad particle size distributions such as carbon black, AsFlFFF has been found to provide a more accurate particle size distribution than DLS. This is because AsFlFFF, unlike DLS, can analyze each fraction by separating particles by size.

An analysis method of reflectance spectra of strongly correlated electron systems

  • Hwang, Jungseek
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.14-18
    • /
    • 2013
  • We introduce a generic method to analyze optical 17reflectance spectra of strongly correlated electron systems including high-temperature superconductors by using an extended Drude model and Allen's approach. We explain the process step by step from reflectance through the optical conductivity and the scattering rate to the bosonic spectral function. Through the process we are able to get important information on the interactions between charge carriers from measured optical conductivity of the strongly correlated electron systems including copper oxide and iron pnitide high temperature superconductors.