Browse > Article
http://dx.doi.org/10.5806/AST.2019.32.3.77

[Retraction]Characterization of carbon black nanoparticles using asymmetrical flow field-flow fractionation (AsFlFFF)  

Kim, Kihyun (Department of Chemistry, Hannam University,)
Lee, Seungho (R&BD Center, Chemtree Co. Ltd.)
Kim, Woonjung (Department of Chemistry, Hannam University,)
Publication Information
Analytical Science and Technology / v.32, no.3, 2019 , pp. 77-87 More about this Journal
Abstract
High viscosity carbon black dispersions are used in various industrial fields such as color cosmetics, rubber, tire, plastic and color filter ink. However, carbon black particles are unstable to heat due to inherent characteristics, and it is very difficult to keep the quality of the product constant due to agglomeration of particles. In general, particle size analysis is performed by dynamic light scattering (DLS) during the dispersion process in order to select the optimum dispersant in the carbon black dispersion process. However, the existing low viscosity analysis provides reproducible particle distribution analysis results, but it is difficult to select the optimum dispersant because it is difficult to analyze the reproducible particle distribution at high viscosity. In this study, dynamic light scattering (DLS) and asymmetrical flow field-flow fractionation (AsFlFFF) analysis methods were compared for reproducible particle size analysis of high viscosity carbon black. First, the stability of carbon black dispersion was investigated by particle size analysis by DLS and AsFlFFF according to milling time, and the validity of analytical method for the selection of the optimum dispersant useful for carbon black dispersion was confirmed. The correlation between color and particle size of particles in high viscosity carbon black dispersion was investigated by using colorimeter. The particle size distribution from AsFlFFF was consistent with the colorimetric results. As a result, the correlation between AsFlFFF and colorimetric results confirmed the possibility of a strong analytical method for determining the appropriate dispersant and milling time in high viscosity carbon black dispersions. In addition, for nanoparticles with relatively broad particle size distributions such as carbon black, AsFlFFF has been found to provide a more accurate particle size distribution than DLS. This is because AsFlFFF, unlike DLS, can analyze each fraction by separating particles by size.
Keywords
High Viscosity; Carbon black (CB); Asymmetrical flow field-flow fractionation (AsFlFFF); Dynamic light scattering (DLS); Size distribution;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 B. B. Boonstra, and A. I. Medalia, Rubber Chemistry and Technology, 36(1), 115-142 (1963).   DOI
2 A. I. Medalia, Rubber Chemistry and Technology, 59(3), 432-454 (1986).   DOI
3 E. Auer, A. Freund, J. Pietsch, and T. Tacke, Appl. Catal. A Gen., 173(2), 259-271 (1998).   DOI
4 Y. Lin, T. W. Smith, and P. Alexandridis, Langmuir, 18(16), 6147-6158 (2002).   DOI
5 K. Loganathan, D. Bose, and D. Weinkauf, Int. J. Hydrogen Energy, 39(28), 15766-15771 (2014).   DOI
6 S. M. Iveson, J. D. Litster, K. Hapgood, and B. J. Ennis, Powder Technol., 117(1-2), 3-39 (2001).   DOI
7 F. Tiarks, K. Landfester, and M. Antonietti, Macromol. Chem. Phys., 202(1), 51-60 (2001).   DOI
8 S. Lee, C. H. Eum, and W. J. Kim, Bull. Korean Chem. Soc., 60(4), 286-291 (2016).   DOI
9 P. A. Hartley and G. D. Parfitt, Langmuir, 1(6), 651-657 (1985).   DOI
10 M. Hermansson, Colloids Surf. B Biointerfaces, 14(1-4), 105-119 (1999).   DOI
11 R. J. Pugh, T. Matsunaga, and F. M. Fowkes, Colloids Surf., 7(3), 183-207 (1983).   DOI
12 J. A. Belmont, J. E. Johnson, and C. E. Adams, US Patent number 5,571,311 (1996).
13 C. E. Adams and J. A. Belmont, US patent number 5,895,522(1999).
14 R. S. Whitehouse, US Patent number 5,872,177(1999).
15 C. F. Lee, C. C. Yang, L. Y. Wang, and W. Y. Chiu, Polym., 46(15), 5514-5523 (2005).   DOI
16 E. M. Dannenberg, Rubber Chemistry and Technology, 25(4), 843-857 (1952).   DOI
17 A. A. Tracton, CRC Press, 1st Edition, 528 (2006).
18 W. Kim, J. Bae, C. H. Eum, J. Jung, and S. Lee, Microchem. J., 142, 167-174 (2018).   DOI
19 J. Bae, J. Jung, S. Lee, and W. Kim, J. Korean Oil. Chemists' Soc, 34(2), 357-366 (2017).
20 T. Shibata, US Patent number 6,374,244 (2002).
21 J. Bae, W. Kim, K. Rah, E. C. Jung, and S. Lee, Microchem. J., 104, 44-48 (2012).   DOI
22 H. Dou, E. C. Jung, and S. Lee, J. Chromatogr. A, 1393, 115-121 (2015).   DOI
23 B. Wittgren, K. G. Wahlund, H. Derand, and B. Wesslen, Macromolecules, 29(1), 268-276 (1996).   DOI
24 J. C. Giddings, J. Sep. Sci., 1(1), 123-125 (1966).
25 K. G. Wahlund, and J. C. Giddings, Anal. Chem., 59(9), 1332-1339 (1987).   DOI
26 A. Litzen, and K. G. Wahlund, Anal. Chem., 63(10), 1001-1007 (1991).   DOI
27 T. Oyanagi and K. Nakano, US Patent number 7,763,108 (2010).
28 A. Litzen, Anal. Chem., 65(4), 461-470 (1993).   DOI
29 D. Braun, R. Sauerwein, and G. P. Hellmann, Macromol. Symp., 163(1), 59-66 (2001).   DOI