DOI QR코드

DOI QR Code

Statistical Analysis of the Springback Scatter according to the Material Strength in the Sheet Metal Forming Process

판재성형공정에서의 소재 강도에 따른 스프링백 산포의 통계분석

  • Son, Min-Kyu (Department of Mechanical Engineering, Graduate School, Daegu University) ;
  • Kim, Se-Ho (School of Mechanical Engineering, Daegu University)
  • 손민규 (대구대학교 대학원 기계공학과) ;
  • 김세호 (대구대학교 기계공학부)
  • Received : 2022.01.03
  • Accepted : 2022.04.20
  • Published : 2022.04.28

Abstract

In this paper, the stochastic distribution of the springback amount is investigated for the stamping process of a U-channel shaped-product with ultra-high strength steel. Using the reliability-based design optimization technique (RBDO), stochastic distribution of process parameters is considered in the analysis including material properties and process variation. Quantification of the springback scatters is carried out with the statistical analysis method according to the material strength. It is found that the scattering amount of springback decreases while the amount of springback increases as the tensile strength of the blank material increases, which is investigated by analyzing the strain and stress distribution of the punch and die shoulder. It is noted that the proposed scheme is capable of predicting and responding to the unavoidable scattering of springback in the sheet metal forming process.

본 논문에서는 소재의 강도에 따라 U 채널형상 제품의 판재성형공정에서 발생하는 스프링백 현상의 산포경향의 분석을 수행하였다. 성형공정의 유한요소해석 및 신뢰성 기반 최적화 기법을 적용하여 인장강도, 항복강도, 소재 두께 등 재질 산포와 마찰계수와 패딩력 등의 공정 산포를 고려하여 산포해석을 실시하였다. 산포해석 결과 산포에 유의한 영향을 미치는 인자는 항복강도와 인장강도 순으로 나타났으며, 소재의 인장강도가 클수록 스프링백 양은 증가하는 반면 스프링백의 산포량이 감소하는 것을 확인하였다. 주요 변형이 발생하는 펀치 어깨부와 다이 어깨부의 변형률과 응력 산포 분석을 통하여 스프링백 산포량 감소의 원인을 분석하였다. 본 논문에 제안된 산포분석기법을 활용할 경우 불가피하게 발생하는 성형공정의 산포를 예측하고 대응이 가능할 것으로 기대된다.

Keywords

Acknowledgement

This research was supported by the Daegu University Research Grant, 2018.

References

  1. J. H. Wiebenga, E. H. Atzema, Y. G. An, H. Vegter & A. H. Boogaard. (2014). Effect of Material Scatter on the Plastic Behavior and Stretchability in Sheet Metal Forming. Journal of Materials Processing Technology, 214(2), 238-252. DOI : 10.1016/j.jmatprotec.2013.08.008
  2. T. Souza & B. F. Rolfe. (2010). Characterising Material and Process Variation Effects on Springback Robustness for a Semi-cylindrical Sheet Metal Forming Process. International Journal of Mechanical Sciences, 52(12), 1756-1766. DOI : 10.1016/j.ijmecsci.2010.09.009
  3. B. H. Choi, S. H. Kim & H. K. Kim. (2013). Quantitative Evaluation of Shape Accuracy in a Hat-type Product with UHSS according to the Forming Procedure. Journal of the Korean Society for Precision Engineering, 30(10), 1111-1117. DOI : 10.7736/KSPE.2013.30.10.1111
  4. AutoForm. (2018). AutoForm-User Interface R7 Software Manual.
  5. S. B. Bae & S. H. Kim. (2018). Influence of the Material Scattering on the Springback Tendency in the Stamping Process of the UHSS. Journal of the Korean Society for Precision Engineering, 35(8), 791-796. DOI : 10.7736/KSPE.2018.35.8.791
  6. M. K. Son. (2019). Analysis of the Effect of Springback Scattering by Statistical Analysis Method on Ultra High Strength in the Sheet Metal Forming Process. M. S. dissertation, Daegu University, Gyeongbuk.
  7. L. Marretta, G. Ingarao & D. Lorenzo. (2010). Design of Sheet Stamping Operations to Control Springback and Thinning : A Multi-objective Stochastic Optimization Approach. International Journal of Mechanical Sciences, 52(7), 917-927. DOI : 10.1016/j.ijmecsci.2010.03.008
  8. T. Souza & B. Rolfe. (2008). Multivariate Modeling of Variability in Sheet Metal Forming. Journal of Materials Processing Technology, 203(1-3), 1-12. DOI : 10.1016/j.jmatprotec.2007.09.075
  9. X. Zhang, P. Grimm, B. Carleer, W. Jin, G. Liu & Y. Cheng. (2014). Robust Process Design and Springback Compensation of a Decklid Inner. Proc. Numisheet 2014, (pp. 717-721). DOI : 10.1063/1.4850072
  10. S. Tatipala, J. Pilthammar, M. Sigvant, J. Wall & C. M. Johansson. (2018). Introductory Study of Sheet Metal Forming Simulations to Evaluate Process Robustness. Proc. IDDRG 2018, (pp. 1-8). DOI : 10.1088/1757-899X/418/1/012111
  11. A. Birkert, B. Hartmann, M. Scholle & M. Straub. (2018). Optimization of the Process Robustness of the Stamping of Complex Body Parts with regard to Dimensional Accuracy. Proc. IDDRG 2018. DOI : 10.1088/1757-899X/418/1/012107
  12. F. Pukelsheim. (1994). The Three Sigma Rule. The American Statistician, 48(2), 88-91. DOI : 10.2307/2684253
  13. Y. Aoues & A. Chateauneuf. (2010). Benchmark Study of Numerical Methods for Reliability-based Design Optimization. Structural and Multidisciplinary Optimization, 412(2), 277-294. DOI : 10.1007/s00158-009-0412-2
  14. H. S. Choi & W. J. Chung. (2016). A Numerical Study on Formability Improvement by Adjusting Blank Holding Force. Journal of Korea Society of Die & Mold Engineering, 10(1), 31-35.
  15. L. Wang & T. C. Lee. (2005). Controlled Strain Path Forming Process with Space Variant Blank Holder Force using RSM Method. Journal of Materials Processing Technology, 167(2-3), 447-455. DOI : 10.1016/j.jmatprotec.2005.06.017