• Title/Summary/Keyword: Scattering parameter

Search Result 211, Processing Time 0.023 seconds

Performance of Denoising Autoencoder for Enhancing Image in Shallow Water Acoustic Communication (천해 음향 통신에서 이미지 향상을 위한 디노이징 오토인코더의 성능 평가)

  • Jeong, Hyun-Soo;Lee, Chae-Hui;Park, Ji-Hyun;Park, Kyu-Chil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.327-329
    • /
    • 2021
  • Underwater acoustic communication channel is influenced by environmental parameters such as multipath, background noise and scattering. Therefore, a transmitted signal is influenced by the sea surface and the sea bottom boundaries, and a received signal shows a delay spread. These factors create a noise in the image and degrade the quality of underwater acoustic communication. To solve these problems, in this paper, we evaluate the performance of an underwater acoustic communication model using a denoising auto-encoder used for unsupervised learning. Noise images generated by the underwater multipath channel were collected and used as training data. Experimental results were analyzed as a PSNR parameter that expressed the noise ratio of the two images.

Enhancing Underwater Images through Deep Curve Estimation (깊은 곡선 추정을 이용한 수중 영상 개선)

  • Muhammad Tariq Mahmood;Young Kyu Choi
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.23-27
    • /
    • 2024
  • Underwater images are typically degraded due to color distortion, light absorption, scattering, and noise from artificial light sources. Restoration of these images is an essential task in many underwater applications. In this paper, we propose a two-phase deep learning-based method, Underwater Deep Curve Estimation (UWDCE), designed to effectively enhance the quality of underwater images. The first phase involves a white balancing and color correction technique to compensate for color imbalances. The second phase introduces a novel deep learning model, UWDCE, to learn the mapping between the color-corrected image and its best-fitting curve parameter maps. The model operates iteratively, applying light-enhancement curves to achieve better contrast and maintain pixel values within a normalized range. The results demonstrate the effectiveness of our method, producing higher-quality images compared to state-of-the-art methods.

  • PDF

Field Measurement of Suspended Material Distribution at the River Confluence (하천 합류부에서의 부유입자 분포에 대한 현장측정)

  • Kwak, Sunghyun;Lee, Kyungsu;Cho, Hanil;Seo, Yongjae;Lyu, Siwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.467-474
    • /
    • 2017
  • Each river confluence has the inherent hydraulic and mixing characteristics coming from its bathymetry and topography. It is necessary to make the measurement covering the spatial extent of studying area in order to catch these 2-dimensional intrinsic characteristics. This study focuses to investigate the hydraulic and mixing characteristics at the confluence of Nakdong and Geumho River, from field measurement of flow, water quality, and suspended particle distribution with ADCP (Riversurveyor M9), multi-parameter water quality sonde (YSI6600V2), and submersible system for in-situ observations of particle size distribution and volume concentration (LISST : Laser In-Situ Scattering & Transmissometry), respectively. From the results, it can be found that the field measurement of suspended particle and water quality distribution can be the useful approach to catch the hydraulic and mixing characteristics at a river confluence.

Study of Optimal Light Scattering Pattern Design for Flat Lighting Device using Glass Light Guide (유리도광체를 이용한 평판조명용 광확산패턴의 최적설계 연구)

  • Han, Jeong-Min;Kim, Won-Bae
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.242-246
    • /
    • 2017
  • In this study, it was investigated about optical simulation in high brightness and high uniformity general lighting using glass light guide plate. And we adopt edge-light emission type light plate. Edge-light type lighting has been used LCD application, especially note PC or smart phone backlight unit. Because it had the good properties such as slim shape and light weight. We thought this type was suitable for general lighting application such as wall attached type or ceiling mount type. But many of edge-light type lighting had problems. It called slanted output light rays. That was main key parameter how could control the direction of output light rays. We investigated the solution of this problems, using ray tracing method, we recognized the major fact of the solution relied on the geometric structure of diffusing dot shape. We set the conditions of aspect ratio in diffusing dot shape such as 0.5 to 1. And, at first, we designed diffusing dots shape based on the results of optical simulation and made specimen. as above condition, and acquired good result in confirming dots shape such as the value of the output rays's peak angle was around 75 degrees. And good light distribution characteristics were measured by slated spectro-radiometer. It was shown that the effective ways of designing light distribution characteristics using optical simulation such as ray tracing linear method for making general lighting using glass light guide plate.

Detection of Icebergs Using Full-Polarimetric RADARSAT-2 SAR Data in West Antarctica (고해상도 다중편파 RADARSAT-2 SAR자료를 이용한 서남극해의 빙산 탐지)

  • Kim, Jin-Woo;Kim, Duk-jin;Kim, Seung-Hee;Hwang, Byong-Jun;Yackel, John
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.21-28
    • /
    • 2012
  • In this study, detection of icebergs that have various scattering characteristics around Wilkinson glacier in West Antarctica is investigated using C-band fully-polarimetric RADARSAT-2 SAR data. Various polarimetric analyses including Freeman-Durden decomposition, H/A/$\bar{\alpha}$ decomposition, entropy (H) and anisotropy (A) method, and Wishart unsupervised classification, were applied for the RADARSAT-2 data used in this study. The polarimetric decomposition methods were successfully classified most of the iceberg, yet some iceberg with similar intensity of volume and surface scattering as sea ice were indistinguishable. Unsupervised classification with a combination of the polarimetric parameter, [1-H][1-A], gave a possibility to distinguish those unclassified iceberg.

Growth and Characterization of ZnSe Thin Film for Blue Diode (청색 Diode 개발을 위한 ZnSe 박막성장과 특성에 관한 연구)

  • 박창선;홍광준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.533-538
    • /
    • 2001
  • The ZnSe sample grown by chemical bath deposition (CBD) method were annealed in Ar gas at 450$^{\circ}C$ Using extrapolation method of X-ray diffraction pattern, it was found to have zinc blend structure whose lattice parameter a$\_$o/ was 5.6687 ${\AA}$. From Hall effect, the mobility was likely to be decreased by impurity scattering at temperature range from 10 K to 150 K and by lattice scattering at temperature range from 150 K to 29 3K. The band gap given by the transmission edge changed from 2.7005 eV at 293 K to 2.8739 eV at 10 K. Comparing photocurrent peak position with transmission edge, we could find that photocurrent peaks due to excition electrons from valence band, $\Gamma$$\_$8/ and $\Gamma$$\_$7/ to conduction band $\Gamma$$\_$6/ were observed at photocurrent spectrum. From the photocurrent spectra by illumination of polarized light on the ZnSe thin film, we have found that values of spin orbit coupling splitting Δso is 0.0981 eV. From the PL spectra at 10 K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0612 eV and the dissipation energy of the donor -bound exciton and acceptor-bound exciton to be 0.0172 eV, 0.0310 eV, respectively.

  • PDF

Experimental Extraction of Effective Permittivity on the Structures of Coplanar Waveguides (코프래너 도파로 구조에서 S-파라메터를 이용한 유효유전상수 실험적 도출)

  • 지용
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.11
    • /
    • pp.15-20
    • /
    • 2004
  • This paper proposed a very simple method of extracting an effective permittivity from the data of scattering parameters measured on the transmission line of coplanar waveguides in the frequency range of microwave or millimeter waves. This is an extracting method of an effective permittivity $\varepsilon$$_{eff}$ in the case of $\beta$$\ell$ =n$\pi$ (n=integer), where the value of S$_{11}$ changes abruptly following the operating frequency. The experimental value of the effective permittivity $\varepsilon$$_{eff}$ on a dielectric substrate of Rogers 4003$^{TM}$ material of $\varepsilon$$_{r}$ =3.38 showed the value of 2.042, which differs in the error of -3.4% to 8% from those calculated from the previously reported formulae. This result showed that the measurement method was very simple, as well as applied directly to the fabricated circuit patterns, even though the circuit patterns might be complicated or on the substrate of different dielectric materials.s.als.

Monitoring of Climate Change of Northeast Asia and Background Atmosphere in Korea

  • Oh, Sung-Nam;Chung, Hyo-Sang;Choi, Jae-Cheon;Bang, So-Young;Hyun, Myung-Suk
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.232-235
    • /
    • 2003
  • In general, the parameters of climate change include aerosol chemical compounds, aerosol optical depth, greenhouse gases(carbon dioxide, CFCs, methane, nitrous oxide, tropospheric ozone), ozone distribution, precipitation acidity and chemical compounds, persistent organic pollutants and heavy metals, radioactivity, solar radiation including ultra-violet and standard meteorological parameters. Over the last ten years, the monitoring activities of Korea regarding to the climate change have been progressed within the WMO GAW and ACE-Asia IOP programs centered at the observation sites of Anmyeon and Jeju Gosan islands respectively. The Greenhouse gases were pointed out that standard air quality monitoring techniques are required to enhance data comparability and that data presentation formats need to be harmonized and easily understood. Especially, the impact of atmospheric aerosols on climate depends on their optical properties, which, in turn, are a function of aerosol size distribution and the spectral reflective indices. Aerosol optical depth and single scattering albedo in the visible are used as the two basic parameters in the atmospheric temperature variation studies. The former parameter is an indicator of the attenuation power of aerosols, while the latter represents the relative strength of scattering and absorption by aerosols. For aerosols with weak absorption, surface temperature decreases as the optical depth increases because of the domination of backscattering. For aerosols with strong absorption, however, warming could occur as the optical depth increases. The objective of the study is to characterize the means, variability, and trends of Greenhouse gases and aerosol properties on a regional basis using data from its baseline observatories in Korea peninsula. A further goal is to understand the factors that control radiative forcing of the greenhouse and aerosol.

  • PDF

Gold Shell Nanocluster Networks in Designing Four-Branch (1×4) Y-Shape Optical Power Splitters

  • Ahmadivand, Arash;Golmohammadi, Saeed
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.274-282
    • /
    • 2014
  • In this study, closely spaced Au nanoparticles which are arranged in nanocluster (heptamer) configurations have been employed to design efficient plasmonic subwavelength devices to function at the telecommunication spectrum (${\lambda}$~1550 nm). Utilizing two kinds of nanoparticles, the optical properties of heptamer clusters composed of Au rod and shell particles that are oriented in triphenylene molecular fashion have been investigated numerically, and the cross-sectional profiles of the scattering and absorption of the optical power have been calculated based on a finite-difference time-domain (FDTD) method. Plasmon hybridization theory has been utilized as a theoretical approach to characterize the features and properties of the adjacent and mutual heptamer clusters. Using these given nanostructures, we designed a complex four-branch ($1{\times}4$) Y-shape splitter that is able to work at the near infrared region (NIR). This splitter divides and transmits the magnetic plasmon mode along the mutual heptamers arrays. Besides, as an important and crucial parameter, we studied the impact of arm spacing (offset distance) on the guiding and dividing of the magnetic plasmon resonance propagation and by calculating the ratio of transported power in both nanorod and nanoshell-based structures. Finally, we have presented the optimal structure, that is the four-branch Y-splitter based on shell heptamers which yields the power ratio of 23.9% at each branch, 4.4 ${\mu}m$ decaying length, and 1450 nm offset distance. These results pave the way toward the use of nanoparticles clusters in molecular fashions in designing various efficient devices that are able to be efficient at NIR.

Usability Research of Onco Flash in SPECT (SPECT 검사에서 Onco Flash의 유용성과 질적 향상 평가)

  • Noh, Ik-Sang;Cha, Eun-Sun;Kim, Ki;Choi, Choon-Ki;Suk, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.3-8
    • /
    • 2009
  • Purpose: Onco flash shortens a scan time with half and there is a possibility of getting the data which corresponds in existing. The experiment which makes the image whose Onco Flash is excellent OSEM tried, as changes parameter of time, iteration. After reconstituting an image, produces FWHM and executes an evaluation. Materials and Methods: Siemens e.cam gamma camera, standard Jaszczak phantom and spatial resolution phantom was used. In order for the bubble not to enter, implants 2 mCi and volume 0.25 cc $^{99m}Tc$ respectively in line 3 to spatial resolution phantom. Put on that phantom on the table correctly, and acquires an image. 15 mCi putting in distilled water to mix $^{99m}Tc$ well in Jaszczak phantom and acquires image just like spatial resolution phantom. Reconstructs and converts the image to digital image as Sante program. Produce FWHM and evaluate by Amide. Results: The non-scattered image shows better FWHM value than scattered image. As time increases from 10 sec to 30 sec for 5sec interval, FWHM appeared to 30.1, 28.5, 24.5, 23.6, 23.4 mm. At the standard iteration value 4, OSEM FWHM shows 8.0 mm, and Onco Flash is 8.1 mm. As fade in iteration, FWHM value more and more decreased. Conclusion: When using Onco Flash, shortens a scan time, and enhances image quality. Also, user can adjust the parameters to improve resolution. Therefore, patient and user are satisfied with these merits.

  • PDF