DOI QR코드

DOI QR Code

Detection of Icebergs Using Full-Polarimetric RADARSAT-2 SAR Data in West Antarctica

고해상도 다중편파 RADARSAT-2 SAR자료를 이용한 서남극해의 빙산 탐지

  • Kim, Jin-Woo (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Duk-jin (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Seung-Hee (School of Earth and Environmental Sciences, Seoul National University) ;
  • Hwang, Byong-Jun (Scottish Marine Institute) ;
  • Yackel, John (Department of Geography, University of Calgary)
  • Received : 2011.12.23
  • Accepted : 2012.01.18
  • Published : 2012.02.29

Abstract

In this study, detection of icebergs that have various scattering characteristics around Wilkinson glacier in West Antarctica is investigated using C-band fully-polarimetric RADARSAT-2 SAR data. Various polarimetric analyses including Freeman-Durden decomposition, H/A/$\bar{\alpha}$ decomposition, entropy (H) and anisotropy (A) method, and Wishart unsupervised classification, were applied for the RADARSAT-2 data used in this study. The polarimetric decomposition methods were successfully classified most of the iceberg, yet some iceberg with similar intensity of volume and surface scattering as sea ice were indistinguishable. Unsupervised classification with a combination of the polarimetric parameter, [1-H][1-A], gave a possibility to distinguish those unclassified iceberg.

본 논문에서는 서남극해에 위치한 Wilkinson 빙하주변에 존재하는 다양한 산란특징을 보이는 빙산을 고해상도 C-밴드RADARSAT-2의 다중편파 합성구경레이더 (SAR) 자료를 이용하여 탐지할 수 있는 기법을 연구 하였다. 다중편파 SAR 자료에 적용할 수 있는 다양한 기법 들 중 전자기파 산란 특성을 파악할 수 있는 Freeman-Durden decomposition, H/A/$\bar{\alpha}$ decomposition, 그리고 entropy (H)와 anisotropy(A) 기법 들과, 다중편파 SAR자료의 분류를 위해 Wishart 무감독 분류법을 연구지역 SAR 자료에 적용 하였다. 그 결과, Freeman Durden, H/A/$\bar{\alpha}$ decomposition을 이용한 기법들은 대부분의 빙산들을 잘 분류 하였지만 해빙과 비슷한 표면 산란과 체적 산란을 가지고 있는 빙산은 구분되지 않았다. 반면, H와 A의 조합 변수 중 하나인 [1-H][1-A] 변수를 이용한 무감독 분류법은 이러한 빙산들을 잘 구분하였다.

Keywords

References

  1. Cloude, S.R. and E. Pottier, 1997. An entropy based classification scheme for land applications of polarimetric SAR, IEEE Transactions on Geoscience and Remote Sensing, 35(1): 68-78. https://doi.org/10.1109/36.551935
  2. Freeman, A. and S.L. Durden, 1998. A three-component scattering model for polarimetric SAR data, IEEE Transactions on Geoscience and Remote Sensing, 36(3): 963-973. https://doi.org/10.1109/36.673687
  3. Fun,g A.K. and H.J. Eom, 1982. Application of a combined rough surface and volume scattering theory to sea ice and snow backscatter, IEEE Transactions on Geoscience and Remote Sensing, GE-20(4): 528-536.
  4. Lee, J.S. and E. Pottier, 2009. Polarimetric radar imaging: from basics to applications, CRC Press, New York, USA.
  5. Lee, J.S., M.R. Grunes, T.L. Ainsworth, L.J. Du, D.L. Schuler, and S.R. Cloude, 1999. Unsupervised classification using polarimetric decomposition and the complex wishart classifier, IEEE Transactions on Geoscience and Remote Sensing, 37(5): 2249-2257. https://doi.org/10.1109/36.789621
  6. MacAyeal, D.R., 1992. Irregular oscillations of the West Antarctic ice sheet, Nature, 359: 29-32. https://doi.org/10.1038/359029a0
  7. Onstott, R.G., T.C. Grenfell, C. Matzler, C.A. Luther, and E.A. Svendsen, 1987. Evolution of microwave sea ice signatures during early summer and midsummer in the marginal ice zone, Journal of Geophysics Research, 92(C7): 6825-6835. https://doi.org/10.1029/JC092iC07p06825
  8. Power, D., J. Youden, K. Lane, C. Randell, and D. Flett, 2001. Iceberg Detection Capabilities of RADARSAT Synthetic Aperture Radar, Canadian Journal of Remote Sensing, 27(5): 476-486. https://doi.org/10.1080/07038992.2001.10854888
  9. Rignot, E. and R.H. Thomas, 2002. Mass balance of polar ice sheets, Science, 297(5586): 1502-1506. https://doi.org/10.1126/science.1073888
  10. Tournader, J., K. Whitmer, and F. Ardhuin, 2008. Iceberg detection in open water by altimeter waveform analysis, Journal of Geophysical Research, 113(C08040): 1-8.
  11. Williams, R.N., W.G. Rees, and N.W. Young, 1999. A technique for the identification and analysis of icebergs in synthetic aperture radar images of Antarctica, International Journal of Remote Sensing, 20(15&16): 3183-3199. https://doi.org/10.1080/014311699211697
  12. Willis C.J., J.T. Macklin, K.C. Partington, K.A. Teleki, W.G. Rees, and R.G. Williams, 1996. Iceberg detection using ERS-1 Synthetic Aperture Radar, International Journal of Remote Sensing, 17(9): 1777-1795. https://doi.org/10.1080/01431169608948739

Cited by

  1. Incidence Angle Correction of SAR Sea Ice Data Based on Locally Linear Mapping vol.54, pp.6, 2012, https://doi.org/10.1109/tgrs.2015.2513159
  2. A Depolarization Ratio Anomaly Detector to Identify Icebergs in Sea Ice Using Dual-Polarization SAR Images vol.54, pp.9, 2012, https://doi.org/10.1109/tgrs.2016.2569450
  3. 한국의 극지 원격탐사 vol.34, pp.6, 2018, https://doi.org/10.7780/kjrs.2018.34.6.2.1