Browse > Article
http://dx.doi.org/10.3807/JOSK.2014.18.3.274

Gold Shell Nanocluster Networks in Designing Four-Branch (1×4) Y-Shape Optical Power Splitters  

Ahmadivand, Arash (Department of Electrical Engineering, Ahar Branch, Islamic Azad University)
Golmohammadi, Saeed (School of Engineering-Emerging Technologies, University of Tabriz)
Publication Information
Journal of the Optical Society of Korea / v.18, no.3, 2014 , pp. 274-282 More about this Journal
Abstract
In this study, closely spaced Au nanoparticles which are arranged in nanocluster (heptamer) configurations have been employed to design efficient plasmonic subwavelength devices to function at the telecommunication spectrum (${\lambda}$~1550 nm). Utilizing two kinds of nanoparticles, the optical properties of heptamer clusters composed of Au rod and shell particles that are oriented in triphenylene molecular fashion have been investigated numerically, and the cross-sectional profiles of the scattering and absorption of the optical power have been calculated based on a finite-difference time-domain (FDTD) method. Plasmon hybridization theory has been utilized as a theoretical approach to characterize the features and properties of the adjacent and mutual heptamer clusters. Using these given nanostructures, we designed a complex four-branch ($1{\times}4$) Y-shape splitter that is able to work at the near infrared region (NIR). This splitter divides and transmits the magnetic plasmon mode along the mutual heptamers arrays. Besides, as an important and crucial parameter, we studied the impact of arm spacing (offset distance) on the guiding and dividing of the magnetic plasmon resonance propagation and by calculating the ratio of transported power in both nanorod and nanoshell-based structures. Finally, we have presented the optimal structure, that is the four-branch Y-splitter based on shell heptamers which yields the power ratio of 23.9% at each branch, 4.4 ${\mu}m$ decaying length, and 1450 nm offset distance. These results pave the way toward the use of nanoparticles clusters in molecular fashions in designing various efficient devices that are able to be efficient at NIR.
Keywords
Nanoshell heptamers; Triphenylene molecule; $1{\times}4$ Y-splitter; Absorption and scattering cross-sections; Power ratio;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T R. Jesen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. V. Duyne, "Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays," J. Phys. Chem. B 103, 3854-3863 (1999).
2 A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, USA, 2000).
3 A. Ahmadivand, S. Golmohammadi, and A. Rostami, "T and Y-splitters based on an $Au/SiO_2$ nanoring chain at an optical communication band," Appl. Opt. 51, 2784-2793 (2012).   DOI
4 A. Ahmadivand, "Hybrid photonic-plasmonic polarization beam splitter (HPPPBS) based on metal-silica-silicon interactions," Opt. Laser Technol. 58, 145-150 (2014).   DOI   ScienceOn
5 S. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).   DOI   ScienceOn
6 S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, "Plasmonics-A route to nanoscale optical devices," Adv. Mater. 19, 1501-1505 (2001).
7 E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, USA, 1991).
8 C. Johnathan, N. Greeves, S. Warren, and P. Wothers, Organic Chemistry (Oxford University Press, Oxford, 2001).
9 S. Y. Ling, J. X. Qing, Y. J. Yi, T. Yi, and W. M. Hua, "Experimental demonstration of two-dimensional multimode interference optical power splitter," Chinese Phys. Lett. 20, 2128-2130 (2003).
10 A. Ahmadivand and S. Golmohammadi, "Comprehensive investigation of noble metal nanoparticles shape, size, and material on the optical response of optimal plasmonic Y-splitter waveguides," Opt. Commun. 310, 1-11 (2014).   DOI   ScienceOn
11 E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).   DOI   ScienceOn
12 W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon sub-wavelength optics," Nature 424, 824-830 (2003).   DOI   ScienceOn
13 E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "Hybridization model for the plasmon resonance of complex nanostructures," Science 302, 419-422 (2003).   DOI   ScienceOn
14 N. Liu, S. Mukherjee, K. Bao, Y. Li, L. V. Brown, P. Nordlander, and N. J. Halas, "Manipulating magnetic plasmon propagation in metallic nanocluster networks," ACS Nano 6, 5482-5488 (2002).
15 L. Chen, J. Shakya, and M. Lipson, "Subwavelength confinement in an integrated metal slot waveguide on silicon," Opt. Lett. 31, 2133-2135 (2006).   DOI   ScienceOn
16 T. Holmgaard, S. I. Bozhenvolny, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayast, "Efficient excitation of dielectric loaded surface plasmon-polarition waveguide modes at telecommunication wavelength," Phys. Rev. B 78, 165431-165439 (2008).   DOI   ScienceOn
17 K. Y. Jung, F. L. Tiexeria, and R. M. Reano, "$Au/SiO_2$ plasmon waveguides at optical communication band," J. Lightwave Technol. 9, 2757-2764 (2007).
18 M. L. Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B Condens. Mater. 62, R16356-R16359 (2000).   DOI   ScienceOn
19 S. D. Gendey, Introduction to the Finite-Difference Time- Domain (FDTD) Method for Electromagnetics (Morgan & Claypool, USA, 2010).
20 W. H. Zhen, Y. J. Zhong, L. Z. Li, Z. X. Feng, S. Wei, and F. C. Shui, "Silicon-on-insulator based 2${\times}$2 multimode interference coupler with large tolerance," Chinese Phys. Lett. 18, 245-247 (2000).
21 A. L. Fructos, S. Campione, F. Capolino, and F. Mesa, "Characterization of complex plasmonic modes in twodimensional periodic arrays of metal nanospheres," J. Opt. Soc. Am. B 28, 1446-1458 (2011).   DOI   ScienceOn
22 S. A. Maier, P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Appl. Phys. Lett. 81, 1714-1716 (2002).   DOI   ScienceOn
23 P. K. Jian and M. A. El-Sayed, "Noble metal nanoparticle pairs: Effect of medium for enhanced nanosensing," Nano Lett. 8, 4347-4352 (2008).   DOI   ScienceOn
24 D. W. Brandl, C. Oubre, and P. Nordlander, "Plasmon hybridization in nanoparticle dimers," Nano Lett. 4, 899-903 (2004).   DOI   ScienceOn
25 N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nat. Mater. 7, 31-37 (2008).   DOI   ScienceOn
26 J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, "Self-assembled plasmonic nanoparticles clusters," Science 328, 1135-1138 (2010).   DOI   ScienceOn
27 M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, "Transition from isolated to collective modes in plasmonics oligomers," Nano Lett. 10, 2721-2726 (2010).   DOI   ScienceOn
28 U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, Germany, 1995).
29 H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, Germany, 1988).
30 B. E. A. Saleh and M. C. Tiech, Fundamentals of Photonics (Wiley & Sons, New York, USA, 1991).
31 C. F. Bohren and D. R. Huffman, Absorption, and Scattering of Light by Small Particles (Wiley & Sons, New York, USA, 1998).
32 S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, USA, 2007).
33 A. Artar, A. A. Yanik, and H. Altug, "Multispectral plasmon induced transparency in coupled meta-atoms," Nano Lett. 11, 1685-1689 (2011).   DOI   ScienceOn
34 J. J. Xiao, J. P. Huang, and K. W. Yu, "Optical response of strongly coupled metal nanoparticles in dimer arrays," Phys. Rev. B Condens. Mater. 71, 045404-045412 (2005).   DOI   ScienceOn
35 Y. Sun and Y. Xia, "Shape-controlled synthesis of gold and silver nanoparticles," Science 298, 2176-2179 (2002).   DOI   ScienceOn