• Title/Summary/Keyword: Scattering Parameter

Search Result 209, Processing Time 0.033 seconds

ON THE INVERSE PROBLEM FOR STURM-LIOUVILLE OPERATOR WITH A NONLINEAR SPECTRAL PARAMETER IN THE BOUNDARY CONDITION

  • Mamedov, Khanlar R.
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1243-1254
    • /
    • 2009
  • The inverse scattering problem is investigated for some second order differential equation with a nonlinear spectral parameter in the boundary condition on the half line [0, $\infty$). In the present paper the coefficient of spectral parameter is not a pure imaginary number and the boundary value problem is not selfadjoint. We define the scattering data of the problem, derive the main integral equation and show that the potential is uniquely recovered.

The critical slab problem with the Anlı-Güngor scattering function

  • R.G. Tureci
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2864-2872
    • /
    • 2023
  • The criticality problem in this study is studied with the recently investigated the Anlı-Güngör scattering function. The scattering function depends on the Legendre polynomials as the Mika scattering function, but it includes only one scattering parameter, t, and its orders. Both Mika and Anlı-Güngör scattering are the same for only linear anisotropic scattering. The difference appears for the quadratic scattering and further. The analytical calculations are performed with the HN method, and the numerical results are calculated with Wolfram Mathematica. Interpolation technique in Mathematica is also used to approximate the isotropic scattering results when t parameter goes to zero. Thus, the calculated results could be compared with the literature data for isotropic scattering.

Analysis and Modeling of Clock Grid Network Using S-parameter (S-파라미터를 사용한 클락 그리드 네트워크의 분석과 모델링)

  • Kim, Kyung-Ki
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.12
    • /
    • pp.37-42
    • /
    • 2007
  • Clock grid networks are now common in most high performance microprocessors. This paper presents a new effective modeling and simulation methodology for the clock grid using scattering parameter. It also shows the effect of wire width and grid size on the clock skew of the grid. The interconnection of the clock grid is modeled by RC passive elements. The results show that the error is within 10 % comparing to Hspice simulation results.

Phase Shift Analysis of 6Li Elastic Scattering on 12C and 28Si at Elab = 318 MeV

  • Kim, Yong Joo
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1331-1337
    • /
    • 2018
  • We present a three-parameter phase shift model whose form is the same as that of Coulombmodified Glauber model obtained from Gaussian nuclear densities. This model is applied to the $^6Li+^{12}C$ and the $^6Li+^{28}Si$ elastic scatterings at $E_{lab}=318MeV$. The calculated differential cross sections provide quite a satisfactory account of the experimental data. The diffractive oscillatory structures observed at forward angles can be explained as being due to the strong interference between the near-side and the far-side scattering amplitudes. The optical potentials for two systems are predicted by using the method of inversion. The calculated inversion potentials are found to be in fairly good agreements with the results determined from the optical model analysis in the surface regions around the strong absorption radius. We also investigate the effects of parameters in the three-parameter phase shift model on the elastic scattering cross sections.

Size Effect of Light Scattering on the Nano-Sized Color Filter Pigment in Liquid Crystal Display

  • Jhun, Chul Gyu;Gwag, Jin Seog
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.184-187
    • /
    • 2014
  • This study examined the effects of particle size on the light scattering of a nano-sized color filter pigment used to obtain a range of colors in liquid crystal displays. The contrast ratio is one of the most important characteristics of liquid crystal displays. When a color filter is located between two crossed polarizers, the size of the pigment can give rise to a decrease in the contrast ratio due to Rayleigh scattering by the nanoparticles in the filter. The size effect of the color filter pigment on the contrast ratio was investigated in terms of the depolarization parameter. As an experimental result, the depolarization parameter increased with decreasing pigment size. Therefore, a smaller pigment size can reduce light leakage caused by light scattering in the color filter between two crossed polarizers. The depolarization function was also proposed as a useful function for predicting the decrease in the contrast ratio of the color filter.

Investigation of Laser Scattering Pattern and Defect Detection Based on Rayleigh Criterion for Crystalline Silicon Wafer Used in Solar Cell (태양전지 실리콘 웨이퍼에서의 레일리기준 기반 레이저산란 패턴 분석 및 결함 검출)

  • Yean, Jeong-Seung;Kim, Gyung-Bum
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.606-613
    • /
    • 2011
  • In this paper, patterns of laser scattering and detection of micro defects have been investigated based on Rayleigh criterion for silicon wafer in solar cell. Also, a new laser scattering mechanism is designed using characteristics of light scattering against silicon wafer surfaces. Its parameters are to be optimally selected to obtain effective and featured patterns of laser scattering. The optimal parametric ranges of laser scattering are determined using the mean intensity of laser scattering. Scattering patterns of micro defects are investigated at the extracted parameter region. Among a lot of pattern features, both maximum connected area and number of connected component in patterns of laser scattering are regarded as the important information for detecting micro defects. Their usefulness is verified in the experiment.

Two-Port Vector Network Analysis System with a Vector Signal Channel (벡터 전압 수신기를 이용한 2-포트 산란 계수 분석 시스템)

  • Lee, Dong-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.5
    • /
    • pp.541-548
    • /
    • 2013
  • This paper presents a vector network analysis system for 2-port scattering parameters of microwave devices using some basic microwave instruments/devices such as signal generators, vector voltmeter, directional couplers and frequency mixers. The analytical model and implementation method for scattering parameter measurements - which can replace the vector network analyzers - are presented. The performance of the implemented system is evaluated through 1- and 2-port scattering parameter measurements, respectively. The vector volt signals which determine the scattering parameters are detected in two distinct methods depending on the frequency band of interests; a direct-detection method with a single signal generator and vector voltmeter for relatively low band and a heterodyne method to frequency down-mix associated with an additional signal source as well as frequency mixers for high band are used, respectively. Using these two methods, scattering parameters of UHF and X bands are evaluated and their performances are verified through a comercial vector network analyzer.

Liquid crystal-surface interactions studied by light scattering

  • Copic, Martin;Vilfan, Mojca
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1711-1714
    • /
    • 2006
  • Anchoring energy of liquid crystals on solid substrates is a key parameter in liquid crystal technology. A nonperturbative method of its measurement by dynamic light scattering on thermal orientational fluctuations is presented, The ratio of the zenithal and azimuthal anchoring coefficients is shown to be equal to the ratio of the orientational elastic constants.

  • PDF

Scattering Parameter-based Measurement of Planar EMI filter

  • Wang, Shishan;Gong, Min;Xu, Chenchen
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.806-813
    • /
    • 2014
  • Planar electromagnetic interference (EMI) filters are widely used to restrain the conducted EMI of switching power supplies. Such filters are characterized by small size, low parasitic parameters, and better high-frequency performance than the passive discrete EMI filter. However, EMI filter performance cannot be exactly predicted by using existing methods. Therefore, this paper proposes a method to use scattering parameters (S-parameters) for the measurement of EMI filter performance. A planar EMI filter sample is established. From this sample, the relationship between S-parameters and insertion gain (IG) of EMI filter is derived. To determine the IG under different impedances, the EMI filter is theoretically calculated and practically measured. The differential structure of the near-field coupling model is also deduced, and the IG is calculated under standard impedance conditions. The calculated results and actual measurements are compared to verify the feasibility of the theory.