DOI QR코드

DOI QR Code

The critical slab problem with the Anlı-Güngor scattering function

  • R.G. Tureci (Kirikkale University, Kirikkale Vocational School)
  • 투고 : 2023.01.11
  • 심사 : 2023.04.15
  • 발행 : 2023.08.25

초록

The criticality problem in this study is studied with the recently investigated the Anlı-Güngör scattering function. The scattering function depends on the Legendre polynomials as the Mika scattering function, but it includes only one scattering parameter, t, and its orders. Both Mika and Anlı-Güngör scattering are the same for only linear anisotropic scattering. The difference appears for the quadratic scattering and further. The analytical calculations are performed with the HN method, and the numerical results are calculated with Wolfram Mathematica. Interpolation technique in Mathematica is also used to approximate the isotropic scattering results when t parameter goes to zero. Thus, the calculated results could be compared with the literature data for isotropic scattering.

키워드

과제정보

In the first version of the manuscript the scattering parameter was taken in interval |t| ≤ 1 as in the original paper for AG scattering function. With a short analysis I did thanks to the criticism of the referees, the definition range of the scattering parameter must be - 0:54 ≤ t ≤ 0:54. Therefore, it is my debt to thank the referees for contributing to the scientific value of my study. I also want to thank Prof. F. Anli for helpful discussions.

참고문헌

  1. B. Davison, Neutron Transport Theory, Oxford University Press, London, 1958.
  2. G.J. Mitsis, Transport solutions to the one-dimensional critical problem, Nucl. Sci. Eng. 17 (1963) 55-64. https://doi.org/10.13182/NSE63-A17210
  3. K.M. Case, Elementary solutions of the transport equation and their applications, Ann. Phys. 9 (1960) 1-23. https://doi.org/10.1016/0003-4916(60)90060-9
  4. K.M. Case, P.F. Zweifel, Linear Transport Theory, Addition-Wesley, Massachusetts, 1967.
  5. I. Carlvik, Monoenergetic critical parameters and decay constants for small homogeneous spheres and thin homogeneous slabs, Nucl. Sci. Eng. 31 (1968) 295-303. https://doi.org/10.13182/NSE31-295
  6. D.C. Sahni, N.G. Sjostrand, Criticality and time eigenvalues for one-speed € neutron transport, Prog. Nucl. Energy 23 (1990) 241-289. https://doi.org/10.1016/0149-1970(90)90004-O
  7. D.C. Sahni, Some new results pertaining to criticality and time eigenvalues of one-speed neutron transport equation, Prog. Nucl. Energy 30 (1996) 305-320. https://doi.org/10.1016/0149-1970(95)00092-5
  8. D.C. Sahni, N.G. Sjostrand, Non-monotonic variation of the criticality factor with the degree of anisotropy in one-speed neutron transport, Transport Theor. Stat. Phys. 20 (1991) 339-349. https://doi.org/10.1080/00411459108203910
  9. D.C. Sahni, N.G. Sjostrand, Criticality eigenvalues of the one-speed transport € equation with strong forward-backward scattering -relationship with rod model, Transport Theor. Stat. Phys. 27 (1998) 137-158. https://doi.org/10.1080/00411459808205812
  10. E. Inonu, A Theorem on anisotropic scattering, Transport Theor. Stat. Phys. 3 (1973) 137-146. https://doi.org/10.1080/00411457308205276
  11. E.B. Dahl, N.G. Sjostrand, Eigenvalue spectrum of multiplying slabs and spheres for monoenergetic neutrons with anisotropic scattering, Nucl. Sci. Eng. 69 (1979) 114-125. https://doi.org/10.13182/NSE69-114
  12. N.S. Garis, One-speed neutron transport eigenvalues for reflected slabs and spheres, Nucl. Sci. Eng. 107 (1991) 343-358. https://doi.org/10.13182/NSE91-A23796
  13. N.S. Garis, N.G. Sjostrand, Eigenvalues for reflecting boundary conditions in one-speed neutron transport theory, Ann. Nucl. Energy 21 (1994) 67-80. https://doi.org/10.1016/0306-4549(94)90064-7
  14. C.E. Siewert, M.M.R. Williams, The effect of anisotropic scattering on the critical slab problem in neutron transport theory using a synthetic kernel, J. Phys. Appl. Phys. 10 (1977) 2031-2040. https://doi.org/10.1088/0022-3727/10/15/007
  15. A. Kavenoky, The CN method of solving the transport equation: application to plane geometry, Nucl. Sci. Eng. 65 (1978) 209-225. https://doi.org/10.13182/NSE78-A27152
  16. P. Grandjean, C.E. Siewert, The FN method in neutron-transport theory. Part II: applications and numerical results, Nucl. Sci. Eng. 69 (1979) 161-168. https://doi.org/10.13182/NSE79-A20608
  17. M.A. Atalay, The critical slab problem for reflecting boundary conditions in one-speed neutron transport theory, Ann. Nucl. Energy 23 (1996) 183e193.
  18. C. Tezcan, A. Kaskas, M.C. Gulecyuz, The HN method for solving linear transport equation: theory and applications, J. Quant. Spectrosc. Radiat. Transf. 78 (2003) 243-254. https://doi.org/10.1016/S0022-4073(02)00224-8
  19. R.G. Tureci, M.C. Gulecyuz, A. Kaskas, C. Tezcan, Application of the HN method to the critical slab problem for reflecting boundary conditions, J. Quant. Spectrosc. Radiat. Transf. 88 (2004) 499-517. https://doi.org/10.1016/j.jqsrt.2004.04.001
  20. M.C. Gulecyuz, R.G. Tureci, C. Tezcan, The critical slab problem for linearly anisotropic scattering and reflecting boundary conditions with the HN method, Kerntechnik 71 (2006) 149-154. https://doi.org/10.3139/124.100288
  21. R.G. Tureci, M.C. Gulecyuz, The slab albedo and criticality problem for the quadratic scattering kernel with the H-N method, Kerntechnik 73 (2008) 171-175. https://doi.org/10.3139/124.100564
  22. J.R. Mika, Neutron transport with anisotropic scattering, Nucl. Sci. Eng. 11 (1961) 415-427. https://doi.org/10.13182/NSE61-1
  23. D. Gulderen, D.C. Sahni, R.G. Tureci, A. Aydin, The Milne problem for linear-triplet anisotropic scattering with HN method, J. Comput. Theor. Transp. 51 (2022) 329-353. https://doi.org/10.1080/23324309.2022.2141779
  24. H. Koklu, O. Ozer, Analyzing of the scattering coefficients in the neutron transport equation for critical systems, J. Comput. Theor. Transp. 51 (2022) 112-138. https://doi.org/10.1080/23324309.2022.2091601
  25. F. Anli, F. Yasa, S. Gungor, General Eigenvalue Spectrum in a One-Dimensional Slab Geometry Transport Equation, Nucl. Sci. Eng. 150 (2005) 72-77. https://doi.org/10.13182/NSE05-A2502
  26. A. Bulbul, F. Anli, Criticality calculations with PN approximation for certain scattering parameters of Anli-Gungor and Henyey-Greenstein phase functions in spherical geometry, Kerntechnik 80 (2015) 161-166. https://doi.org/10.3139/124.110470
  27. H. Ozturk, O. Ege, Solution of the € finite slab criticality problem using an alternative phase function with the second kind of Chebyshev polynomials, Nucl. Sci. Tech. 30 (2019) 1-7. https://doi.org/10.1007/s41365-018-0540-8
  28. H. Ozturk, F. Anli, Diffusion approximation for certain scattering parameters of the Anli-Gungor phase function, Kerntechnik 77 (2012) 381-384. https://doi.org/10.3139/124.110216
  29. B.R. Maleki, Using the Monte Carlo Method to Solve the Half-Space and Slab Albedo Problems with Inonu and Anli-Gungor Strongly Anisotropic Scattering Functions, Nucl. Eng. Technol. 55 (2023) 324-329. https://doi.org/10.1016/j.net.2022.09.024
  30. R.G. Tureci, The Slab Albedo problem with the Anli-Gungor scattering function, Indian J. Phys. (2023), https://doi.org/10.1007/s12648-023-02625-y.
  31. R.G. Tureci, A. Bulbul, Case's method for anli-gungor scattering formula, Suleyman Demirel universitesi Fen Edebiyat Fakultesi Fen Dergisi 17 (2022) 1-8. https://doi.org/10.29233/sdufeffd.925308
  32. R.G. McClarren, Calculating time eigenvalues of the neutron transport equation with dynamic mode decomposition, Nucl. Sci. Eng. 193 (2019) 854-867. https://doi.org/10.1080/00295639.2018.1565014
  33. A. Gupta, R.S. Modak, Evaluation of dominant time-eigenvalues of neutron transport equation by Meyer's sub-space iterations, Ann. Nucl. Energy 38 (2011) 1680-1686. https://doi.org/10.1016/j.anucene.2011.02.016
  34. D.E. Kornreich, D.K. Parsons, Time-eigenvalue calculations in multi-region Cartesian geometry using Green's functions, Ann. Nucl. Energy, 32, (205) 964-985.
  35. R. Sanchez, D. Tomatis, I. Zmijarevic, H.G. Joo, Analysis of alpha modes in multigroup diffusion, Nucl. Eng. Technol. 49 (2017) 1259-1268. https://doi.org/10.1016/j.net.2017.07.007
  36. Wolfram Research, Inc., Mathematica, Champaign, IL, 2023. Version 12.2.
  37. R.L. Burden, R. Burden, J.D. Faires, A.M. Burden, in: Numerical Analysis, 10th ed, Cengage Editor, Cenveo, 2016.