Browse > Article
http://dx.doi.org/10.3938/NPSM.68.1331

Phase Shift Analysis of 6Li Elastic Scattering on 12C and 28Si at Elab = 318 MeV  

Kim, Yong Joo (Department of Physics and Research Institute for Basic Sciences, Jeju National University)
Abstract
We present a three-parameter phase shift model whose form is the same as that of Coulombmodified Glauber model obtained from Gaussian nuclear densities. This model is applied to the $^6Li+^{12}C$ and the $^6Li+^{28}Si$ elastic scatterings at $E_{lab}=318MeV$. The calculated differential cross sections provide quite a satisfactory account of the experimental data. The diffractive oscillatory structures observed at forward angles can be explained as being due to the strong interference between the near-side and the far-side scattering amplitudes. The optical potentials for two systems are predicted by using the method of inversion. The calculated inversion potentials are found to be in fairly good agreements with the results determined from the optical model analysis in the surface regions around the strong absorption radius. We also investigate the effects of parameters in the three-parameter phase shift model on the elastic scattering cross sections.
Keywords
Three-parameter phase shift model; Coulomb-modified Glauber model; McIntyre parametrized phase shift model; Phase shift analysis; $^6Li$ elastic scattering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. M. Brink, Semi-Classical Methods for Nucleus-Nucleus Scattering (Cambridge Univ. Press, Cambridge, 1985).
2 P. Frobrich and R. Lipperheide, Theory of Nuclear Reaction (Oxford Science Publications, 1996).
3 J. A. McIntyre, K. H. Wang and L. C. Becker, Phys. Rev. 117, 1337 (1960).   DOI
4 M. C. Mermaz, B. Bonin, M. Buenerd and J. Y. Hostachy, Phys. Rev. C 34, 1988 (1986).   DOI
5 S. K. Charagi, S. K. Gupta, M. G. Betigeri, C. V. Fernandes and Kuldeep, Phys. Rev. C 48, 1152 (1993).   DOI
6 M. H. Cha, J. Korean Phys. Soc. 49, 1389 (2006).
7 R. I. Badran, H. Badahdah, M. Arafah and R. Khalidi, Int. J. Mod. Phys. E 19, 2199 (2010).   DOI
8 V. Franco and A. Tekou, Phys. Rev. C 16, 658 (1977).   DOI
9 J. Chauvin, D. Lebrun, A. Lounis and M. Buenerd, Phys. Rev. C 28, 1970 (1983).   DOI
10 A. Vitturi and F. Zardi, Phys. Rev. C 36, 1404 (1987).   DOI
11 Y. J. Kim, New Phys.: Sae Mulli 66, 37 (2016).   DOI
12 Y. J. Kim and M. H. Cha, J. Korean Phys. Soc. 27, 444 (1994).
13 A. Nadasen, T. Stevens, J. Farhat, J. Brusoe and P. Schwandt et al., Phys. Rev. C 47, 674 (1993).
14 M. E. Farid and M. A. Hassanain, Nucl. Phys. A 678, 39 (2000).   DOI
15 I. Ahmad and M. R. Arafah, Pramana-J. Phys. 66, 495 (2006).   DOI
16 Y. J. Kim, New Phys.: Sae Mulli 64, 389 (2014).   DOI
17 S. K. Charagi and S. K. Gupta, Phys. Rev. C 41, 1610 (1990).   DOI
18 C. Xiangzhou, F. Jun, S. Wenqing, M. Yugang and W. Jiansong et al., Phys. Rev. C 58, 572 (1998).   DOI
19 H. M. Fayyad, T. H. Rihan and A. M. Awin, Phys. Rev. C 53, 2334 (1996).
20 R. C. Fuller, Phys. Rev. C 12, 1561 (1975).   DOI