DOI QR코드

DOI QR Code

Phase Shift Analysis of 6Li Elastic Scattering on 12C and 28Si at Elab = 318 MeV

  • Kim, Yong Joo (Department of Physics and Research Institute for Basic Sciences, Jeju National University)
  • Received : 2018.09.11
  • Accepted : 2018.10.10
  • Published : 2018.12.31

Abstract

We present a three-parameter phase shift model whose form is the same as that of Coulombmodified Glauber model obtained from Gaussian nuclear densities. This model is applied to the $^6Li+^{12}C$ and the $^6Li+^{28}Si$ elastic scatterings at $E_{lab}=318MeV$. The calculated differential cross sections provide quite a satisfactory account of the experimental data. The diffractive oscillatory structures observed at forward angles can be explained as being due to the strong interference between the near-side and the far-side scattering amplitudes. The optical potentials for two systems are predicted by using the method of inversion. The calculated inversion potentials are found to be in fairly good agreements with the results determined from the optical model analysis in the surface regions around the strong absorption radius. We also investigate the effects of parameters in the three-parameter phase shift model on the elastic scattering cross sections.

Keywords

Acknowledgement

Supported by : Jeju National university

References

  1. D. M. Brink, Semi-Classical Methods for Nucleus-Nucleus Scattering (Cambridge Univ. Press, Cambridge, 1985).
  2. P. Frobrich and R. Lipperheide, Theory of Nuclear Reaction (Oxford Science Publications, 1996).
  3. J. A. McIntyre, K. H. Wang and L. C. Becker, Phys. Rev. 117, 1337 (1960). https://doi.org/10.1103/PhysRev.117.1337
  4. M. C. Mermaz, B. Bonin, M. Buenerd and J. Y. Hostachy, Phys. Rev. C 34, 1988 (1986). https://doi.org/10.1103/PhysRevC.34.1988
  5. S. K. Charagi, S. K. Gupta, M. G. Betigeri, C. V. Fernandes and Kuldeep, Phys. Rev. C 48, 1152 (1993). https://doi.org/10.1103/PhysRevC.48.1152
  6. M. H. Cha, J. Korean Phys. Soc. 49, 1389 (2006).
  7. R. I. Badran, H. Badahdah, M. Arafah and R. Khalidi, Int. J. Mod. Phys. E 19, 2199 (2010). https://doi.org/10.1142/S0218301310016600
  8. V. Franco and A. Tekou, Phys. Rev. C 16, 658 (1977). https://doi.org/10.1103/PhysRevC.16.658
  9. J. Chauvin, D. Lebrun, A. Lounis and M. Buenerd, Phys. Rev. C 28, 1970 (1983). https://doi.org/10.1103/PhysRevC.28.1970
  10. A. Vitturi and F. Zardi, Phys. Rev. C 36, 1404 (1987). https://doi.org/10.1103/PhysRevC.36.1404
  11. Y. J. Kim and M. H. Cha, J. Korean Phys. Soc. 27, 444 (1994).
  12. A. Nadasen, T. Stevens, J. Farhat, J. Brusoe and P. Schwandt et al., Phys. Rev. C 47, 674 (1993).
  13. M. E. Farid and M. A. Hassanain, Nucl. Phys. A 678, 39 (2000). https://doi.org/10.1016/S0375-9474(00)00313-4
  14. Y. J. Kim, New Phys.: Sae Mulli 66, 37 (2016). https://doi.org/10.3938/NPSM.66.37
  15. I. Ahmad and M. R. Arafah, Pramana-J. Phys. 66, 495 (2006). https://doi.org/10.1007/BF02704493
  16. Y. J. Kim, New Phys.: Sae Mulli 64, 389 (2014). https://doi.org/10.3938/NPSM.64.389
  17. S. K. Charagi and S. K. Gupta, Phys. Rev. C 41, 1610 (1990). https://doi.org/10.1103/PhysRevC.41.1610
  18. H. M. Fayyad, T. H. Rihan and A. M. Awin, Phys. Rev. C 53, 2334 (1996).
  19. R. C. Fuller, Phys. Rev. C 12, 1561 (1975). https://doi.org/10.1103/PhysRevC.12.1561
  20. C. Xiangzhou, F. Jun, S. Wenqing, M. Yugang and W. Jiansong et al., Phys. Rev. C 58, 572 (1998). https://doi.org/10.1103/PhysRevC.58.572