• Title/Summary/Keyword: Scanning probe

Search Result 588, Processing Time 0.027 seconds

Fabrication of the FET-based SPM probe by CMOS standard process and its performance evaluation (CMOS 표준 공정을 통한 SPM 프로브의 제작 및 그 성능 평가)

  • Lee, Hoontaek;Kim, Junsoo;Shin, Kumjae;Moon, Wonkyu
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.236-242
    • /
    • 2021
  • In this paper, we report the fabrication of the tip-on-gate of a field-effect-transistor (ToGoFET) probe using a standard complementary metal-oxide-semiconductor (CMOS) process and the performance evaluation of the fabricated probe. After the CMOS process, I-V characteristic measurement was performed on the reference MOSFET. We confirmed that the ToGoFET probe could be operated at a gate voltage of 0 V due to channel ion implantation. The transconductance at the operating point (Vg = 0 V, Vd = 2 V) was 360 ㎂/V. After the fabrication process was completed, calibration was performed using a pure metal sample. For sensitivity calibration, the relationship between the input voltage of the sample and the output current of the probe was determined and the result was consistent with the measurement result of the reference MOSFET. An oxide sample measurement was performed as an example of an application of the new ToGoFET probe. According to the measurement, the ToGoFET probe could spatially resolve a hundred nanometers with a height of a few nanometers in both the topographic image and the ToGoFET image.

Effective Detecting Method of Nmap Idle Scan

  • Hwang, Jungsik;Kim, Minsoo
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • In recent years, information collection of attacks through stealth port scanning technology has become more sophisticated. The most commonly used Nmap port scanner supports a variety of stealth scanning technologies along with the existing scanning techniques. Nmap also supports Idle scan that is different from conventional stealth scans. This is a more sophisticated stealth scan technique by applying the SYN scan and ACK scan techniques. In previous studies, the detection of Idle scanning was on zombie system, but was not on victim system. In this paper, we propose an effective detection method of Idle scan on victim system. The Idle scanning is composed of two stages; they are probing the zombie and victim system and scanning the victim system. We analyzed the characteristics of the two stages. The characteristics, we captured, are that SYN and RST packets are different from normal packet. We applied them to detection method, then Idle scanning is detected effectively.

Measurement using Low-temperature Scanning Hall Probe Microscopy and Analysis of Local Current Distribution using Inversion Problem Technique (저온 주사 홀소자 현미경과 역변환 방법을 이용한 국소적 전류 분포 분석)

  • Cho, B.R.;Park, S.K.;Park, H.Y.;Ri, H.C.
    • Progress in Superconductivity
    • /
    • v.13 no.1
    • /
    • pp.34-39
    • /
    • 2011
  • We have performed measurements of the local magnetic field distribution of YBCO coated conductors using Low-temperature Scanning Hall Probe Microscopy (LT-SHPM). Distribution of stray magnetic field of various types of YBCO coated conductors in the superconducting state was measured in presence of external magnetic fields. We analyzed one dimensional and two dimensional local current distribution using inversion technique from the magnetic field distribution.

Feature Recognition and Segmentation via Z-map in Reverse Engineering (역공학에서 Z-map을 이용한 특징형상 탐색 및 영역화)

  • 김재현;신양호;박정환;고태조;유우식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.176-183
    • /
    • 2003
  • The paper presents a feature recognition and segmentation method for surface approximation in reverse engineering. Efficient digitizing plays an important role in constructing a computational surface model from a physical part-surface without its CAD model on hand. Depending on its measuring source (e.g., touch probe or structured light), each digitizing method has its own strengths and weaknesses in terms of speed and accuracy. The final goal of the research focuses on an integration of two different digitizing methods: measuring by the structured light and that by the touch probe. Gathering bulk of digitized points (j.e., cloud-of-points) by use of a laser scanning system, we construct a coarse surface model directly from the cloud-of-points, followed by the segmentation process where we utilize the z-map filleting & differencing to trace out feature boundary curves. The feature boundary curves and the approximate surface model could be inputs to further digitizing by a scanning touch probe. Finally, more accurate measuring points within the boundary curves can be obtained to construct a finer surface model.

Development of An Automated Scanning Laser Doppler Vibrometer for Measurements of In-Plane Structural Vibration (평면 구조 진동 측정을 위한 자동화된 스캐닝 레이저 도플러 진동측정기의 개발 및 연구)

  • Kil, Hyun-Gwon
    • Journal of KSNVE
    • /
    • v.7 no.2
    • /
    • pp.231-238
    • /
    • 1997
  • An automated scanning laser Doppler vibrometer (LDV) has been designed, and built to measure in-plane vibration fields over structures. Use of optical fibers allows the compact design of a laser probe head which can be scanned over the vibrating structures. An algorithm for automated self-alignment of the laser probe is developed. The system is completely automated for scanning over the structures, focusing two laser beams at each data point until the detected vibration signal is stable, and for recording and transferring the data to a system computer. The automated system allows one to get extensive data of the vibration field over the structures. The system is tested by scanning a piezoelectric cylindrical shell and a plate excited by a continuous signal and by a pulse signal, respectively. Results show that the automated scanning LDV system can be a useful tool to measure the in-plane vibration field and to detect the elastic waves propagating on the vibrating structures.

  • PDF

Quantification of Melanin Density at Epidermal Basal Layer by Using Confocal Scanning Laser Microscope (CSLM) (Confocal Scanning Laser Microscope (CSLM)을 이용한 피부 기저층 멜라닌 밀도의 정량화)

  • Kim, Dong Hyun;Lee, Sung Ho;Oh, Myoung Jin;Choi, Go Woon;Yang, Woo Chul;Park, Chang Seo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.3
    • /
    • pp.259-268
    • /
    • 2014
  • Non-invasive technologies in skin research have enabled to use a live image of living skin without a biopsy or histologic processing of tissue. Confocal scanning laser microscope (CSLM) operated at a near-infrared wavelength of 830 nm allows visualization of inner structure of skin as a non-invasive manner. According to previous researches using CSLM, melanin cap and papillary ring were clearly observed in pigmented areas between stratum basale and papillary dermis. In this study, conversional analysis of CSLM digital images into numerical estimation using scanning probe image processor (SPIP) software was attempted for the first time. It is concluded that a quantification of CSLM images can pave way to expand the field of applications of CSLM.

Multi-Functional Probe Recording: Field-Induced Recording and Near-Field Optical Readout

  • Park, Kang-Ho;Kim, Jeong-Yong;Song, Ki-Bong;Lee, Sung-Q;Kim, Jun-Ho;Kim, Eun-Kyoung
    • ETRI Journal
    • /
    • v.26 no.3
    • /
    • pp.189-194
    • /
    • 2004
  • We demonstrate a high-speed recording based on field-induced manipulation in combination with an optical reading of recorded bits on Au cluster films using the atomic force microscope (AFM) and the near-field scanning optical microscope (NSOM). We reproduced 50 nm-sized mounds by applying short electrical pulses to conducting tips in a non-contact mode as a writing process. The recorded marks were then optically read using bent fiber probes in a transmission mode. A strong enhancement of light transmission is attributed to the local surface plasmon excitation on the protruded dots.

  • PDF

Selective detection of AC transport current distributions in GdBCO coated conductors using low temperature scanning Hall probe microscopy

  • Kim, Chan;Kim, Mu Young;Park, Hee Yeon;Ri, Hyeong-Ceoul
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.1
    • /
    • pp.26-29
    • /
    • 2017
  • We studied the distribution of the current density and its magnetic-field dependence in GdBCO coated conductors with AC bias currents using low temperature scanning Hall probe microscopy. We selectively measured magnetic field profiles from AC signal obtained by Lock-in technique and calculated current distributions by inversion calculation. In order to confirm the AC measurement results, we applied DC current corresponding to RMS value of AC current and compared distribution of AC and DC transport current. We carried out the same measurements at various external DC magnetic fields, and investigated field dependence of AC current distribution. We notice that the AC current distribution unaffected by external magnetic fields and preserved their own path on the contrary to DC current.

Nanomachining on Single Crystal Silicon Wafer by Ultra Short Pulse Electrochemical Oxidation based on Non-contact Scanning Probe Lithography (비접촉 SPL기법을 이용한 단결정 실리콘 웨이퍼 표면의 극초단파 펄스 전기화학 초정밀 나노가공)

  • Lee, Jeong-Min;Kim, Sun-Ho;Kim, Tack-Hyun;Park, Jeong-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.395-400
    • /
    • 2011
  • Scanning Probe Lithography is a method to localized oxidation on single crystal silicon wafer surface. This study demonstrates nanometer scale non contact lithography process on (100) silicon (p-type) wafer surface using AFM(Atomic force microscope) apparatuses and pulse controlling methods. AFM-based experimental apparatuses are connected the DC pulse generator that supplies ultra short pulses between conductive tip and single crystal silicon wafer surface maintaining constant humidity during processes. Then ultra short pulse durations are controlled according to various experimental conditions. Non contact lithography of using ultra short pulse induces electrochemical reaction between micro-scale tip and silicon wafer surface. Various growths of oxides can be created by ultra short pulse non contact lithography modification according to various pulse durations and applied constant humidity environment.

Manipulation of Carbon Nanotube Tip Using Focused Ion Beam (집속이온빔을 이용한 탄소나노튜브 팁의 조작)

  • Yoon, Yeo-Hwan;Park, June-Ki;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.12 s.189
    • /
    • pp.122-127
    • /
    • 2006
  • This paper reports on the development of carbon nanotube tip modified with focused ion beam(FIB). We used an electric field which causes dielectrophoresis, to align and deposit CNTs on a metal-coated canning Probe Microscope (SPM) tip. Using the CNT attached SPM tip, we have obtained an enhanced resolution and wear property compared to that from the bare silicon tip through the scanning of the surface of the bio materials. The carbon nanotube tip was aligned toward the source of the ion beam allowing their orientation to be changed at precise angles. By this technique, metal coated carbon nanotube tips that are several micrometer in length are prepared for SPM.