• Title/Summary/Keyword: Scanning Electron Microscopy Analysis

Search Result 1,368, Processing Time 0.033 seconds

Quantitative Analysis of Pulp fiber Characteristics that Affect Paper Properties (II) (종이의 물성에 영향하는 섬유특성의 정량적 해석(II))

  • 이강진;박종문
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.2
    • /
    • pp.35-39
    • /
    • 2000
  • Refining is very important process of fibers treatment for proper paper properties. An extent of refining is usually measured by freeness, although freeness gives complicated meanings. One of a direct way of studying the refining effects on pulp fibers is making photomicrographs of beaten fibers. The conventional microscopy like light microscopy(LM) and scanning electron microscopy(SEM) require to preserve the wet structure of pulp fibers morphologically since most of papermaking process is carried out almost entirely in water. Recently developed microscopy, especially confocal laser scanning microscopy(CLSM), offers the possibility of examining fully hydrated pulp fibers. Cross-sectional images of wet pulp fibers are also generated using optical sectioning by CLSM and image analysis in order to verify and quantify the extent of fiber wall swelling indicating the internal fibrillation. At low beating load such as 2.5 kgf, in the same freeness, breaking length is higher than that of high beating load such as 5.6 kgf. fiber wall thickness at low beating load is greater than that at high beating load. This result is accounted for the fact that internal fibrillation in the low beating load was high.

  • PDF

Microstructure Analysis of Carbon Nanotubes Grown by Plasma Enhanced Chemical Vapor Deposition (플라즈마 화학기상증착법으로 성장시킨 탄소나노튜브의 미세구조 분석)

  • Yoon Jongsung;Yun Jondo;Park Jongbong;Park Kyeongsu
    • Korean Journal of Materials Research
    • /
    • v.15 no.4
    • /
    • pp.246-251
    • /
    • 2005
  • Plasma enhanced chemical vapor deposition(PE-CVD) method has an advantage in synthesizing carbon nanotubes(CNTs) at lower temperature compared with thermal enhanced chemical vapor deposition(TE-CVD) method. In this study, CNTs was prepared by using PE-CVD method. The growth rate of CNT was faster more than 100 times on using Invar alloy than iron as catalyst. It was found that chrome silicide was formed at the interface between chrome layer and silicon substrate which should be considered in designing process. Nanoparticles of Invar catalyst were found oxidized on their surfaces with a depth of 10 m. Microstructure was analyzed by scanning electron microscopy, transmission electron microscopy, scanning transmission electron microscopy, and energy dispersive x-ray spectrometry. Based on the result of analysis, growth mechanism at an initial stage was suggested.

Optimal Electron Beam Characteristics by Lenses Analysis Using Scanning Electron Microscopy (주사전자현미경 렌즈의 해석을 통한 최적의 빔 특성 연구)

  • Bae, Jinho;Kim, Dong Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • This paper presents a design method for optimizing the focused beam characteristics, which are mainly determined by the condenser lenses in a scanning electron microscopy (SEM) design. Sharply reducing the probe diameter of electron beams by focusing the condenser lens (i.e., the rate of condensation) is important because a small probe diameter results in high-performance demagnification. This study explored design parameters that contribute to increasing the SEM resolution efficiently using lens analysis and the ray tracing method. A sensitivity analysis was conducted based on those results to compare the effects of these parameters on beam focusing. The results of this analysis on the design parameters for the beam characteristics can be employed as basic key information for designing a column in SEM.

Study of the Microstructural Evolution of Tempered Martensite Ferritic Steel T91 upon Ultrasonic Nanocrystalline Surface Modification

  • He, Yinsheng;Yang, Cheol-Woong;Lee, Je-Hyun;Shin, Keesam
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.170-176
    • /
    • 2015
  • In this work, various electron microscopy and analysis techniques were used to investigate the microstructural evolution of a 9% Cr tempered martensite ferritic (TMF) steel T91 upon ultrasonic nanocrystalline surface modification (UNSM) treatment. The micro-dimpled surface was analyzed by scanning electron microscopy. The characteristics of plastic deformation and gradient microstructure of the UNSM treated specimens were clearly revealed by crystal orientation mapping of electron backscatter diffraction (EBSD), with flexible use of the inverse pole figure, image quality, and grain boundary misorientation images. Transmission electron microscope (TEM) observation of the specimens at different depths showed the formation of dislocations, dense dislocation walls, subgrains, and grains in the lower, middle, upper, and top layers of the treated specimens. Refinement of the $M_{23}C_6$ precipitates was also observed, the size and the number density of which were found to decrease as depth from the top surface decreased. The complex microstructure and microstructural evolution of the TMF steel samples upon the UNSM treatment were well-characterized by combined use of EBSD and TEM techniques.

1-D and 2-D Metal Oxide Nanostructures

  • Son, Yeong-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.87-88
    • /
    • 2012
  • Metal oxide nanostructures have been applied to various fields such as energy, catalysts and electronics. We have freely designed one and two-dimensional (1 and 2-D) metal (transition metals and lanthanides) oxide nanostructures, characterized them using various techniques including scanning electron microscopy, transmission electron microscopy, X-ray diffraction crystallography, thermogravimetric analysis, FT-IR, UV-visible-NIR absorption, Raman, photoluminescence, X-ray photoelectron spectroscopy, and temperature-programmed thermal desorption (reaction) mass spectrometry. In addition, Ag- and Au-doped metal oxides will be discussed in this talk.

  • PDF

A Note on Biogenic Effects of Coralloid Speleothems in Round Mountain Lava Cave, Oregon, U.S.A.

  • Kashima, Naruhiko;Ogawa, Takanori
    • Journal of the speleological society of Korea
    • /
    • v.9
    • /
    • pp.3-7
    • /
    • 1999
  • Corralloid speleothems from Round Mountain lave cave are are studied by scanning microscope and electron microprobe analyses. Scanning microscopy observation indicates that the diatom Melosira seems to contribute significantly to siliceous coralloid speleothems Electron microprobe confirms the presence of diatom and fragmental minerals(plagioclase and orthopyroxene) in coralloid speleothems. Chemical analysis of 3 diatom cells gives SiO2(74.8%), Al2O3(0.12%), FeO(0.11%), CaO(0.47%) and MgO(0.81%).

  • PDF

Plasma-Surface-Treatment of Nylon 6 Fiber for the Improvement of Water-Repellency by Low Pressure RF Plasma Discharge Processing (나일론 6 섬유의 발수성 향상을 위한 RF 플라스마 표면처리)

  • Ji, Young-Yeon;Jeong, Tak;Kim, Sang-Sik
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.31-36
    • /
    • 2007
  • It has been reported that the surface properties of the plasma treated material were changed while maintaining its bulk properties. In this study, surface modification of nylon fiber by plasma treatment was tried to attain high water-repellency Nylon fiber was treated with RF plasma under a vacuum system using various parameters such as gas specious, processing time and processing power. Morphological changes by low pressure plasma treatment were observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Moreover, the mechanical and inherent properties were analyzed by tensile strength, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The high water-repellency property of nylon fiber was evaluated by a water-drop standard test under various conditions in terms of aging effect. The results showed that the water-repellency of plasma-surface-treated nylon fiber was greatly improved compared to untreated nylon fiber.

Characterization of Silicon Nitride Coating Films (Si-N 코팅막의 기계적 물성 및 구조 분석)

  • Go, Cheolho;Kim, Bongseob;Yun, Jondo;Kim, Kwangho
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.5 s.276
    • /
    • pp.359-365
    • /
    • 2005
  • Silicon nitride coating films with various ratios of nitrogen to silicon contents were prepared and characterized. The film was coated on silicon substrate by sputtering method with changing nitrogen gas flow rate in a chamber. The nitrogen to silicon ratio was found to have values in a range from 0 to 1.4. Coated film was characterized with scanning electron microscopy, transmission electron microscopy, electron probe microanalysis, nanoindentation scanning probe microscopy, x-ray photon spectrometry, and Raman spectrometry. Silicon nitride phase in all samples showed amorphous nature regardless of N/Si ratio. When N/Si ratio was 1.25, hardness and elastic modulus of silicon nitride film showed maximum with 22 GPa and 210 GPa, respectively. Those values decreased, when N/Si ratio was higher than 1.25. Raman spectrum showed that no silicon phase exist in the film. XPS result showed that the silicon-nitrogen bond was dominant way for atomic bonding in the film. The structure and property was explained with Random Bonding Model(RBM) which was consistent with the microstructure and chemistry analysis for the coating films.

Analysis of dislocation density in strain-hardened alloy 690 using scanning transmission electron microscopy and its effect on the PWSCC growth behavior

  • Kim, Sung-Woo;Ahn, Tae-Young;Kim, Dong-Jin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2304-2311
    • /
    • 2021
  • The dislocation density in strain-hardened Alloy 690 was analyzed using scanning transmission electron microscopy (STEM) to study the relationship between the local plastic strain and susceptibility to primary water stress corrosion cracking (PWSCC) in nuclear power plants. The test material was cold-rolled at various thickness reduction ratios from 10% to 40% to simulate the strain-hardening condition of plant components. The dislocation densities were measured at grain boundaries (GB) and in grain interiors of strain-hardened specimens from STEM images. The dislocation density in the grain interior monotonically increased as the strain-hardening proceeded, while the dislocation density at the GB increased with strain-hardening up to 20% but slightly decreases upon further deformation to 40%. The decreased dislocation density at the GB was attributed to the formation of deformation twins. After the PWSCC growth test of strain-hardened Alloy 690, the fraction of intergranular (IG) fracture was obtained from fractography. In contrast to the change in the dislocation density with strain-hardening, the fraction of IG fracture increased remarkably when strain-hardened over 20%. From the results, it was suggested that the PWSCC growth behavior of strain-hardened Alloy 690 not only depends on the dislocation density, but also on the microstructural defects at the GB.