DOI QR코드

DOI QR Code

Analysis of dislocation density in strain-hardened alloy 690 using scanning transmission electron microscopy and its effect on the PWSCC growth behavior

  • Kim, Sung-Woo (Materials Safety Research Division, Korea Atomic Energy Research Institute) ;
  • Ahn, Tae-Young (Materials Safety Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Dong-Jin (Materials Safety Research Division, Korea Atomic Energy Research Institute)
  • Received : 2020.10.27
  • Accepted : 2021.01.07
  • Published : 2021.07.25

Abstract

The dislocation density in strain-hardened Alloy 690 was analyzed using scanning transmission electron microscopy (STEM) to study the relationship between the local plastic strain and susceptibility to primary water stress corrosion cracking (PWSCC) in nuclear power plants. The test material was cold-rolled at various thickness reduction ratios from 10% to 40% to simulate the strain-hardening condition of plant components. The dislocation densities were measured at grain boundaries (GB) and in grain interiors of strain-hardened specimens from STEM images. The dislocation density in the grain interior monotonically increased as the strain-hardening proceeded, while the dislocation density at the GB increased with strain-hardening up to 20% but slightly decreases upon further deformation to 40%. The decreased dislocation density at the GB was attributed to the formation of deformation twins. After the PWSCC growth test of strain-hardened Alloy 690, the fraction of intergranular (IG) fracture was obtained from fractography. In contrast to the change in the dislocation density with strain-hardening, the fraction of IG fracture increased remarkably when strain-hardened over 20%. From the results, it was suggested that the PWSCC growth behavior of strain-hardened Alloy 690 not only depends on the dislocation density, but also on the microstructural defects at the GB.

Keywords

Acknowledgement

This research was supported by the Korean Nuclear R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2017M2A8A4015155).

References

  1. P.M. Scott, An overview of materials degradation by stress corrosion cracking in PWRs, in: D. Feron, J.M. Olive (Eds.), Corrosion Issues in Light Water Reactors - Stress Corrosion Cracking, Woodhead Publishing Ltd., New York, 2007.
  2. R.B. Rebak, Z. Szklarska-Smialowska, Corrosion Sci. 38 (1996) 971-988. https://doi.org/10.1016/0010-938X(96)00183-7
  3. S.S. Hwang, Y.S. Lim, S.W. Kim, Corrosion 69 (2013) 1051-1059. https://doi.org/10.5006/0935
  4. J.J. Kai, G.P. Yu, C.H. Tsai, M.N. Liu, S.C. Yao, Metal Trans. A 20 (1989) 2057-2067. https://doi.org/10.1007/BF02650292
  5. P.L. Andresen, M.M. Morra, K. Ahluwalia, J. Wilson, Proc, in: Proc. 14th Int. Conf. On Env. Deg. Mater. Nucl. Power Syst. - Water Reactors, 2009, pp. 846-887. Virginia.
  6. S.W. Kim, S.S. Hwang, J.M. Lee, Corrosion 71 (2015) 1071-1081. https://doi.org/10.5006/1652
  7. S.W. Kim, K.H. Eom, Y.S. Lim, D.J. Kim, Nucl. Eng. Tech. 51 (2019) 1060-1068. https://doi.org/10.1016/j.net.2019.01.010
  8. T. Yonezawa, M. Watanabe, A. Hashimoto, Metall. Mater. Trans. 46 (2015) 2768-2780. https://doi.org/10.1007/s11661-015-2852-1
  9. P.L. Andresen, M.M. Mora, K. Ahluwalia, Proc, in: Proc. 16th Int. Conf. On Env. Deg. Mater. Nucl. Power Syst. - Water Reactors, 2013, pp. 1-22. North Carolina.
  10. S.M. Bruemmer, M.J. Olszta, N.R. Overman, M.B. Toloczko, Proc, in: Proc. 17th Int. Conf. On Env. Deg. Mater. Nucl. Power Syst. - Water Reactors, 2015, pp. 1-17. Ontario.
  11. Q.J. Peng, J. Hou, T. Yonezawa, T. Shoji, Z.M. Zhang, F. Huang, E.-H. Han, W. Ke, Corrosion Sci. 57 (2012) 81-88. https://doi.org/10.1016/j.corsci.2011.12.031
  12. S.M. Bruemmer, M.J. Olszta, M.B. Toloczko, L.E. Thomas, Corrosion 69 (2013) 953-963. https://doi.org/10.5006/0808
  13. S.M. Bruemmer, M.J. Olszta, N.R. Overman, M.B. Toloczko, Proc, in: Proc. 16th Int. Conf. On Env. Deg. Mater. Nucl. Power Syst. - Water Reactors, 2013, pp. 1-14. North Carolina.
  14. S.I. Wright, M.M. Nowell, D.P. Field, Microsc. Microanal. 17 (2011) 316-329.
  15. R.R. Shen, V. Strom, P. Efsing, Mater. Sci. Eng., A 674 (2016) 171-177. https://doi.org/10.1016/j.msea.2016.07.123
  16. R.K. Ham, Philos. Mag. A 6 (1961) 1183-1184. https://doi.org/10.1080/14786436108239679
  17. M. Kehoe, P.M. Kelly, Scripta Metall. 4 (1970) 473-476. https://doi.org/10.1016/0036-9748(70)90088-8
  18. S. Morito, J. Nishikawa, T. Maki, ISIJ Int. 43 (2003) 1475-1477. https://doi.org/10.2355/isijinternational.43.1475
  19. M. Tanaka, K. Higashida, K. Kaneko, S. Hata, M. Mitsuhara, Scripta Mater. 59 (2008) 901-904. https://doi.org/10.1016/j.scriptamat.2008.06.042
  20. M. Tanaka, M. Honda, M. Mitsuhara, S. Hata, K. Kaneko, K. Higashida, Mater. Trans. 49 (2008) 1953-1956. https://doi.org/10.2320/matertrans.MAW200828
  21. Y. Miyajima, M. Mitsuhara, S. Hata, H. Nakashima, N. Tsuji, Mater. Sci. Eng. 528 (2010) 776-779. https://doi.org/10.1016/j.msea.2010.09.058
  22. T. Malis, S.C. Cheng, R.F. Egerton, J. Electron. Microsc. Tech. 8 (1988) 193-200. https://doi.org/10.1002/jemt.1060080206
  23. Astm Standard E 399, Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIC of Metallic Materials, ASTM International, West Conshohocken, PA, 2007.
  24. Astm Standard E 647, Standard Test Method for Measurement of Fatigue Crack Growth Rates, ASTM International, West Conshohocken, PA, 2005.
  25. Y.S. Lim, D.J. Kim, S.S. Hwang, H.P. Kim, S.W. Kim, Mater. Char. 96 (2014) 28-39. https://doi.org/10.1016/j.matchar.2014.07.008
  26. H. Mecking, U.F. Kocks, Prog. Mater. Sci. 48 (2003) 171-273. https://doi.org/10.1016/S0079-6425(02)00003-8
  27. J. Hou, Q.J. Peng, Z.P. Lu, T. Shoji, J.Q. Wang, E.-H. Han, W. Ke, Corrosion Sci. 53 (2011) 1137-1142. https://doi.org/10.1016/j.corsci.2010.11.022
  28. P.L. Andresen, F.P. Ford, Mater. Sci. Eng., A 103 (1988) 167-184. https://doi.org/10.1016/0025-5416(88)90564-2
  29. Q.J. Peng, J. Kwon, T. Shoji, J. Nucl. Mater. 324 (2004) 52. https://doi.org/10.1016/j.jnucmat.2003.09.008
  30. Y.S. Lim, S.W. Kim, S.S. Hwang, H.P. Kim, C.H. Jang, Corrosion Sci. 108 (2016) 125-133. https://doi.org/10.1016/j.corsci.2016.02.040
  31. W. Kuang, M. Song, G.S. Was, Acta Mater. 151 (2018) 321-333. https://doi.org/10.1016/j.actamat.2018.04.002
  32. Z. Lu, T. Shoji, S. Yamazaki, K. Ogawa, Corrosion Sci. 58 (2012) 211-228. https://doi.org/10.1016/j.corsci.2012.01.029
  33. W. Kuang, M. Song, X. Feng, Corrosion Sci. 176 (2020) 108943. https://doi.org/10.1016/j.corsci.2020.108943