Browse > Article
http://dx.doi.org/10.1016/j.net.2021.01.008

Analysis of dislocation density in strain-hardened alloy 690 using scanning transmission electron microscopy and its effect on the PWSCC growth behavior  

Kim, Sung-Woo (Materials Safety Research Division, Korea Atomic Energy Research Institute)
Ahn, Tae-Young (Materials Safety Research Division, Korea Atomic Energy Research Institute)
Kim, Dong-Jin (Materials Safety Research Division, Korea Atomic Energy Research Institute)
Publication Information
Nuclear Engineering and Technology / v.53, no.7, 2021 , pp. 2304-2311 More about this Journal
Abstract
The dislocation density in strain-hardened Alloy 690 was analyzed using scanning transmission electron microscopy (STEM) to study the relationship between the local plastic strain and susceptibility to primary water stress corrosion cracking (PWSCC) in nuclear power plants. The test material was cold-rolled at various thickness reduction ratios from 10% to 40% to simulate the strain-hardening condition of plant components. The dislocation densities were measured at grain boundaries (GB) and in grain interiors of strain-hardened specimens from STEM images. The dislocation density in the grain interior monotonically increased as the strain-hardening proceeded, while the dislocation density at the GB increased with strain-hardening up to 20% but slightly decreases upon further deformation to 40%. The decreased dislocation density at the GB was attributed to the formation of deformation twins. After the PWSCC growth test of strain-hardened Alloy 690, the fraction of intergranular (IG) fracture was obtained from fractography. In contrast to the change in the dislocation density with strain-hardening, the fraction of IG fracture increased remarkably when strain-hardened over 20%. From the results, it was suggested that the PWSCC growth behavior of strain-hardened Alloy 690 not only depends on the dislocation density, but also on the microstructural defects at the GB.
Keywords
Alloy 690; Dislocation density; Intergranular fracture; Strain-hardening; Stress corrosion cracking; Transmission electron microscopy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S.M. Bruemmer, M.J. Olszta, N.R. Overman, M.B. Toloczko, Proc, in: Proc. 16th Int. Conf. On Env. Deg. Mater. Nucl. Power Syst. - Water Reactors, 2013, pp. 1-14. North Carolina.
2 S.I. Wright, M.M. Nowell, D.P. Field, Microsc. Microanal. 17 (2011) 316-329.
3 R.R. Shen, V. Strom, P. Efsing, Mater. Sci. Eng., A 674 (2016) 171-177.   DOI
4 R.K. Ham, Philos. Mag. A 6 (1961) 1183-1184.   DOI
5 M. Kehoe, P.M. Kelly, Scripta Metall. 4 (1970) 473-476.   DOI
6 S. Morito, J. Nishikawa, T. Maki, ISIJ Int. 43 (2003) 1475-1477.   DOI
7 M. Tanaka, M. Honda, M. Mitsuhara, S. Hata, K. Kaneko, K. Higashida, Mater. Trans. 49 (2008) 1953-1956.   DOI
8 S.M. Bruemmer, M.J. Olszta, M.B. Toloczko, L.E. Thomas, Corrosion 69 (2013) 953-963.   DOI
9 Y. Miyajima, M. Mitsuhara, S. Hata, H. Nakashima, N. Tsuji, Mater. Sci. Eng. 528 (2010) 776-779.   DOI
10 T. Malis, S.C. Cheng, R.F. Egerton, J. Electron. Microsc. Tech. 8 (1988) 193-200.   DOI
11 Astm Standard E 399, Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIC of Metallic Materials, ASTM International, West Conshohocken, PA, 2007.
12 H. Mecking, U.F. Kocks, Prog. Mater. Sci. 48 (2003) 171-273.   DOI
13 J. Hou, Q.J. Peng, Z.P. Lu, T. Shoji, J.Q. Wang, E.-H. Han, W. Ke, Corrosion Sci. 53 (2011) 1137-1142.   DOI
14 P.L. Andresen, F.P. Ford, Mater. Sci. Eng., A 103 (1988) 167-184.   DOI
15 Astm Standard E 647, Standard Test Method for Measurement of Fatigue Crack Growth Rates, ASTM International, West Conshohocken, PA, 2005.
16 Y.S. Lim, S.W. Kim, S.S. Hwang, H.P. Kim, C.H. Jang, Corrosion Sci. 108 (2016) 125-133.   DOI
17 Z. Lu, T. Shoji, S. Yamazaki, K. Ogawa, Corrosion Sci. 58 (2012) 211-228.   DOI
18 W. Kuang, M. Song, X. Feng, Corrosion Sci. 176 (2020) 108943.   DOI
19 Q.J. Peng, J. Kwon, T. Shoji, J. Nucl. Mater. 324 (2004) 52.   DOI
20 S.M. Bruemmer, M.J. Olszta, N.R. Overman, M.B. Toloczko, Proc, in: Proc. 17th Int. Conf. On Env. Deg. Mater. Nucl. Power Syst. - Water Reactors, 2015, pp. 1-17. Ontario.
21 Q.J. Peng, J. Hou, T. Yonezawa, T. Shoji, Z.M. Zhang, F. Huang, E.-H. Han, W. Ke, Corrosion Sci. 57 (2012) 81-88.   DOI
22 P.M. Scott, An overview of materials degradation by stress corrosion cracking in PWRs, in: D. Feron, J.M. Olive (Eds.), Corrosion Issues in Light Water Reactors - Stress Corrosion Cracking, Woodhead Publishing Ltd., New York, 2007.
23 R.B. Rebak, Z. Szklarska-Smialowska, Corrosion Sci. 38 (1996) 971-988.   DOI
24 S.S. Hwang, Y.S. Lim, S.W. Kim, Corrosion 69 (2013) 1051-1059.   DOI
25 S.W. Kim, S.S. Hwang, J.M. Lee, Corrosion 71 (2015) 1071-1081.   DOI
26 S.W. Kim, K.H. Eom, Y.S. Lim, D.J. Kim, Nucl. Eng. Tech. 51 (2019) 1060-1068.   DOI
27 T. Yonezawa, M. Watanabe, A. Hashimoto, Metall. Mater. Trans. 46 (2015) 2768-2780.   DOI
28 P.L. Andresen, M.M. Mora, K. Ahluwalia, Proc, in: Proc. 16th Int. Conf. On Env. Deg. Mater. Nucl. Power Syst. - Water Reactors, 2013, pp. 1-22. North Carolina.
29 P.L. Andresen, M.M. Morra, K. Ahluwalia, J. Wilson, Proc, in: Proc. 14th Int. Conf. On Env. Deg. Mater. Nucl. Power Syst. - Water Reactors, 2009, pp. 846-887. Virginia.
30 J.J. Kai, G.P. Yu, C.H. Tsai, M.N. Liu, S.C. Yao, Metal Trans. A 20 (1989) 2057-2067.   DOI
31 M. Tanaka, K. Higashida, K. Kaneko, S. Hata, M. Mitsuhara, Scripta Mater. 59 (2008) 901-904.   DOI
32 Y.S. Lim, D.J. Kim, S.S. Hwang, H.P. Kim, S.W. Kim, Mater. Char. 96 (2014) 28-39.   DOI
33 W. Kuang, M. Song, G.S. Was, Acta Mater. 151 (2018) 321-333.   DOI