• Title/Summary/Keyword: Scanning Electron Microscopy Analysis

Search Result 1,363, Processing Time 0.027 seconds

Precise Comparison of Two-dimensional Dopant Profiles Measured by Low-voltage Scanning Electron Microscopy and Electron Holography Techniques

  • Hyun, Moon-Seop;Yoo, Jung-Ho;Kwak, Noh-Yeal;Kim, Won;Rhee, Choong-Kyun;Yang, Jun-Mo
    • Applied Microscopy
    • /
    • v.42 no.3
    • /
    • pp.158-163
    • /
    • 2012
  • Detailed comparison of low-voltage scanning electron microscopy and electron holography techniques for two-dimensional (2D) dopant profiling was carried out with using the same multilayered p-n junction specimen. The dopant profiles obtained from two methods are in good agreement with each other. It demonstrates that reliability of dopant profile measurement can be increased through precise comparison of 2D profiles obtained from various microscopic techniques.

Analysis of Ceramics Using Scanning Electron Microscopy (주사전자현미경을 활용한 세라믹의 분석)

  • Lee, Sujeong
    • Ceramist
    • /
    • v.22 no.4
    • /
    • pp.368-380
    • /
    • 2019
  • A ceramic is used as a key material in various fields. Accordingly, the use of scanning electron microscopy is increased for the purpose of evaluating the reliability and defects of advanced ceramic materials. The scanning electron microscope is developed to overcome the limitations of optical microscopy and uses accelerated electrons for imaging. Various signals such as SE, BSE and characteristic X-rays provide useful information about the surface microstructure of specimens and, the content and distribution of chemical components. The development of electron guns, such as FEG, and the improved lens system combined with the advanced in-lens detectors and STEM-in-SEM system have expanded the applications of SEM. Automated SEM-EDS analysis also greatly increases the amount of data, enabling more statistically reliable results. In addition, X-ray CT, XRF, and WDS, which are installed in scanning electron microscope, have transformed SEM a more versatile analytical equipment. The performance and specifications of the scanning electron microscope to evaluate ceramics were reviewed and the selection criteria for SEM analysis were described.

Morphological Discretion of Basidiospores of the Puftball Mushroom Calostoma by Electron and Atomic Force Microscopy

  • Kim, Mi-Sun;Kim, Ki-Woo;Jung, Hack-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1721-1726
    • /
    • 2007
  • Comparative morphology among species of the genus Calostoma, including C. cinnabarina, C. ravenelii, and C. japonicum, was investigated by scanning electron microscopy and atomic force microscopy. Spore morphology of C. cinnabarina and C. ravenelii showed no dramatic differences by light microcopy and scanning electron microscopy. To differentiate these species, atomic force microscopy was employed. Quantitative analysis of the surface roughness of basidiospores revealed subtle differences in height fluctuation at the nanometer scale between the species of Calostoma. Basidiospores of C. cinnabarina had a relatively rougher surface than those of C. ravenelii at $2.0{\times}2.0\;{\mu}m^2$ scan areas.

Optimal Conditions for Defect Analysis Using Electron Channeling Contrast Imaging

  • Oh, Jin-Su;Yang, Cheol-Woong
    • Applied Microscopy
    • /
    • v.46 no.3
    • /
    • pp.164-166
    • /
    • 2016
  • Electron channeling contrast imaging (ECCI) is a powerful analyzing tool for identifying lattice defects like dislocations and twin boundaries. By using diffraction-based scanning electron microscopy technique, it enables microstructure analysis, which is comparable to that obtained by transmission electron microscopy that is mostly used in defect analysis. In this report, the optimal conditions for investigating crystal defects are suggested. We could obtain the best ECCI images when both acceleration voltage and probe current are high (30 kV and 20 nA). Also, shortening the working distance (6 mm) enhances the quality of defect imaging.

Electron Microscopy for the Morphological Characterization of Nanocellulose Materials (전자현미경을 이용한 나노셀룰로오스 물질의 형태학적 특성 분석 연구)

  • Kwon, Ohkyung;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.1
    • /
    • pp.5-18
    • /
    • 2016
  • Electron microscopy is an important investigation and analytical method for the morphological characterization of various cellulosic materials, such as micro-crystalline cellulose (MCC), microfibrillated cellulose (MFC), nanofibrillated cellulose (NFC), and cellulose nanocrystals (CNC). However, more accurate morphological analysis requires high-quality micrographs acquired from the proper use of an electron microscope and associated sample preparation methods. Understanding the interaction of electron and matter as well as the importance of sample preparation methods, including drying and staining methods, enables the production of high quality images with adequate information on the nanocellulosic materials. This paper provides a brief overview of the micro and nano structural analysis of cellulose, as investigated using transmission and scanning electron microscopy.

Atomically sculptured heart in oxide film using convergent electron beam

  • Gwangyeob Lee;Seung-Hyub Baek;Hye Jung Chang
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.1.1-1.2
    • /
    • 2021
  • We demonstrate a fabrication of an atomically controlled single-crystal heart-shaped nanostructure using a convergent electron beam in a scanning transmission electron microscope. The delicately controlled e-beam enable epitaxial crystallization of perovskite oxide LaAlO3 grown out of the relative conductive interface (i.e. 2 dimensional electron gas) between amorphous LaAlO3/crystalline SrTiO3.

Measurement of 2-Dimensional Dopant Profiles by Electron Holography and Scanning Capacitance Microscopy Methods (일렉트론홀로그래피와 주사정전용량현미경 기술을 이용한 2차원 도펀트 프로파일의 측정)

  • Park, Kyoung-Woo;Shaislamov, Ulugbek;Hyun, Moon Seop;Yoo, Jung Ho;Yang, Jun-Mo;Yoon, Soon-Gil
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.5
    • /
    • pp.311-315
    • /
    • 2009
  • 2-dimensional (2D) dopant profiling in semiconductor device was carried out by electron holography and scanning capacitance microscopy methods with the same multi-layered p-n junction sample. The dopant profiles obtained from two methods are in good agreement with each other. It demonstrates that reliability of dopant profile measurement can be increased through precise comparison of 2D profiles obtained from various techniques.

Characteristics of Clay Minerals in Sihwa Area (시화지구 연약점토의 광물학적 특성)

  • 김낙경;박종식;김유신
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.773-780
    • /
    • 2003
  • The characteristics of soft clays is very important for the land development plan. This study is to investigate correlations between the engineering properties and the characteristics of clay minerals of the disturbed clay samples obtained from Sihwa area. This study included X-Ray Diffraction Analysis, X-Ray Fluorescence Spectrometer Analysis, Scanning Electron Microscopy Analysis and Energy Dispersive X-Ray Spectrometer Analysis. The correlations between the clay mineral properties and the laboratory and field testing results were investigated.

  • PDF

Transmission Electron Microscopy Sample Preparation of Ge2Sb2Te5 Nanowire Using Electron Beam

  • Lee, Hee-Sun;Lee, Jun-Young;Yeo, Jong-Souk
    • Applied Microscopy
    • /
    • v.45 no.4
    • /
    • pp.199-202
    • /
    • 2015
  • A simple and novel transmission electron microscopy (TEM) sample preparation method for phase change nanowire is investigated. A $Ge_2Sb_2Te_5$ (GST) nanowire TEM sample was meticulously prepared using nanomanipulator and gas injection system in a field emission scanning electron microscopy for efficient and accurate TEM analysis. The process can minimize the damage during the TEM sample preparation of the nanowires, thus enabling the crystallographic analysis of as-grown GST nanowires without unexpected phase transition caused by e-beam heating.

Microstructure and Fracture Path of Cr-Mn-N Steel upon Aging Treatment

  • Lee, Se-Jong;Sung, Jang-Hyun;Ralls, K.M.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.3
    • /
    • pp.21-30
    • /
    • 1991
  • Microstructural analysis was conducted to observe the effect of aging treatments in a Cr-Mn austenitic stainless steel containing nitrogen, and the amount, size, shape and distribution of precipitates were investigated. It was found that on water quenching from $1000^{\circ}C$ after holding 3 h at that temperature, the steel contained no precipitates observable by optical microscopy. Precipitation of phases begins at places most favorable for the formation of nuclei-in the boundaries of grains and twins. Precipitates were studied in detail by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Chemical compositions of precipitates were examined by the use of scanning transmission electron microscopy (STEM) together with an energy dispersive X-ray (EDX) microanalysis. Also chromium depletion adjacent to grain boundary precipitates was investigated by the use of Auger electron spectroscopy (AES) for a direct examination of the fracture surface chemistry.

  • PDF