• Title/Summary/Keyword: Scan Shift

Search Result 84, Processing Time 0.032 seconds

Three-dimensional Chemical Shift Imaging with PRESS Excitation and Spiral Readouts (점구분 분광술 여기 방식과 나선형 판독경사를 이용한 삼차원 화학적 변위 영상법의 개발)

  • Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.1
    • /
    • pp.27-32
    • /
    • 2008
  • Purpose : We developed a 3D CSI (chemical shift imaging) sequence that uses the PRESS (point resolved spectroscopy) excitation scheme and spiral-based readout gradients. Materials and Methods : We implemented constant-density spirals ($32{\times}32$ matrix, $24{\times}24\;cm$ FOV) which use analytic equations to enable real-time prescription on the scanner. In-vivo data from the brain were collected and reconstructed using the gridding algorithm. Results : Data illustrate that with our imaging sequence, the benefits of the PRESS technique, which include elimination of lipid artifacts, remain intact while flexible scan time versus resolution tradeoffs can be achieved using the constant-density spirals. Volumetric high resolution 3D CSI covering 5760 cm3 could be obtained in 12.5 minutes. Conclusion : Spiral-based readout gradients offer a flexible tradeoff between scan time versus resolution. By combining this feature with PRESS based excitation, efficient methods of volumetric spectroscopic imaging can be accomplished by obtaining whole brain coverage while eliminating lipid contamination.

  • PDF

An Efficient Test Compression Scheme based on LFSR Reseeding (효율적인 LFSR 리시딩 기반의 테스트 압축 기법)

  • Kim, Hong-Sik;Kim, Hyun-Jin;Ahn, Jin-Ho;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.3
    • /
    • pp.26-31
    • /
    • 2009
  • A new LFSR based test compression scheme is proposed by reducing the maximum number of specified bits in the test cube set, smax, virtually. The performance of a conventional LFSR reseeding scheme highly depends on smax. In this paper, by using different clock frequencies between an LFSR and scan chains, and grouping the scan cells, we could reduce smax virtually. H the clock frequency which is slower than the clock frequency for the scan chain by n times is used for LFSR, successive n scan cells are filled with the same data; such that the number of specified bits can be reduced with an efficient grouping of scan cells. Since the efficiency of the proposed scheme depends on the grouping mechanism, a new graph-based scan cell grouping heuristic has been proposed. The simulation results on the largest ISCAS 89 benchmark circuit show that the proposed scheme requires less memory storage with significantly smaller area overhead compared to the previous test compression schemes.

Reconstruction of Magnetic Resonance Phase Images using the Compressed Sensing Technique (압축 센싱 기법을 이용한 MRI 위상 영상의 재구성)

  • Lee, J.E.;Cho, M.H.;Lee, S.Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.6
    • /
    • pp.464-471
    • /
    • 2010
  • Compressed sensing can be used to reduce scan time or to enhance spatial resolution in MRI. It is now recognized that compressed sensing works well in reconstructing magnitude images if the sampling mask and the sparsifying transform are well chosen. Phase images also play important roles in MRI particularly in chemical shift imaging and magnetic resonance electrical impedance tomography (MREIT). We reconstruct MRI phase images using the compressed sensing technique. Through computer simulation and real MRI experiments, we reconstructed phase images using the compressed sensing technique and we compared them with the ones reconstructed by conventional Fourier reconstruction technique. As compared to conventional Fourier reconstruction with the same number of phase encoding steps, compressed sensing shows better performance in terms of mean squared phase error and edge preservation. We expect compressed sensing can be used to reduce the scan time or to enhance spatial resolution of MREIT.

Laser scanning unit with plastic f$\theta$ lenses featuring high resolution (600DPI용 플라스틱 f$\theta$렌즈가 실장된 Laser Scanning Unit 의 측정 및 평가)

  • 임천석
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.5
    • /
    • pp.364-368
    • /
    • 1999
  • We investigate the evaluation items of LSU (Laser Scanning Unit), such as beam size, f$\theta$ characteristics, linearity, skew and bow, optical power ratio between image height of 0mm and $\pm$108 mm, pitch error, Jitter and shift of printing position. Through the measurement of LSU using BSH (Beam Scan Head) installed on LMC (Linear Motion Controller) which moves linearly within the whole scanning range (-108 mm~+108 mm), we can ascertain plastic f$\theta$ lenses, which are manufactured by TVLP (Two-step Variable Low Pressure) molding method, to satisfy 600DPI(Dots Per Inch) performance.

  • PDF

Internal Pattern Matching Algorithm of Logic Built In Self Test Structure (Logic Built In Self Test 구조의 내부 특성 패턴 매칭 알고리즘)

  • Jeon, Yu-Sung;Kim, In-Soo;Min, Hyoung-Bok
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1959-1960
    • /
    • 2008
  • The Logic Built In Self Test (LBIST) technique is substantially applied in chip design in most many semiconductor company in despite of unavoidable overhead like an increase in dimension and time delay occurred as it used. Currently common LBIST software uses the MISR (Multiple Input Shift Register) However, it has many considerations like defining the X-value (Unknown Value), length and number of Scan Chain, Scan Chain and so on for analysis of result occurred in the process. So, to solve these problems, common LBIST software provides the solution method automated. Nevertheless, these problems haven't been solved automatically by Tri-state Bus in logic circuit yet. This paper studies the algorithm that it also suggest algorithm that reduce additional circuits and time delay as matching of pattern about 2-type circuits which are CUT(circuit Under Test) and additional circuits so that the designer can detect the wrong location in CUT: Circuit Under Test.

  • PDF

Structural and Electronic Properties of Cu-doped ZnO Thin Films by RF Sputtering Method

  • Lee, Ik-Jae;Seong, Nak-Eon;Yu, Cheong-Jong;Lee, Han-Gu;Sin, Hyeon-Jun;Yun, Yeong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.103-103
    • /
    • 2011
  • The epitaxial Cu-doped ZnO and pure ZnO thin films were grown on Al2O3 (0001) substrates by RF sputtering method. The structures and crystallographic orientations were investigated using X-ray diffraction (XRD) and X-ray absorption spectroscopy. From the XRD pattern, it is observed that peak positions shift towards higher $2{\theta}$ value with Cu doping. The ${\omega}$-scan measurements at the (0002) diffraction peak for these samples reveal that the full-widths at half-maxima (FWHMs) are about $0.017-0.019^{\circ}$, which indicate a good c-axis orientation of the Zn1-xCuxO films. From phi-scan, all of the Zn1-xCuxO films were epitaxially grown. EXAFS measurements also demonstrated that Cu incorporated into a Zn-atom position substitutionally. All the results confirmed that copper ion were well incorporated into the ZnO lattices by substituting Zn sites without changing the wurtzite structure and no secondary phase existed in Cu-doped ZnO thin films.

  • PDF

A New Low Power LFSR Architecture using a Transition Monitoring Window (천이 감시 윈도우를 이용한 새로운 저전력 LFSR 구조)

  • Kim Youbean;Yang Myung-Hoon;Lee Yong;Park Hyuntae;Kang Sungho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.8 s.338
    • /
    • pp.7-14
    • /
    • 2005
  • This paper presents a new low power BIST TPG scheme. It uses a transition monitoring window (TMW) that is comprised of a transition monitoring window block and a MUX. When random test patterns are generated by an LFSR, transitions of those patterns satisfy pseudo-random gaussian distribution. The Proposed technique represses transitions of patterns using a k-value which is a standard that is obtained from the distribution of U to observe over transitive patterns causing high power dissipation in a scan chain. Experimental results show that the Proposed BIST TPG schemes can reduce scan transition by about $60\%$ without performance loss in ISCAS'89 benchmark circuits that have large number scan inputs.

An X-masking Scheme for Logic Built-In Self-Test Using a Phase-Shifting Network (위상천이 네트워크를 사용한 X-마스크 기법)

  • Song, Dong-Sup;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.2
    • /
    • pp.127-138
    • /
    • 2007
  • In this paper, we propose a new X-masking scheme for utilizing logic built-in self-test The new scheme exploits the phase-shifting network which is based on the shift-and-add property of maximum length pseudorandom binary sequences(m-sequences). The phase-shifting network generates mask-patterns to multiple scan chains by appropriately shifting the m-sequence of an LFSR. The number of shifts required to generate each scan chain mask pattern can be dynamically reconfigured during a test session. An iterative simulation procedure to synthesize the phase-shifting network is proposed. Because the number of candidates for phase-shifting that can generate a scan chain mask pattern are very large, the proposed X-masking scheme reduce the hardware overhead efficiently. Experimental results demonstrate that the proposed X-masking technique requires less storage and hardware overhead with the conventional methods.

Rigorous Modeling of the First Generation of the Reconnaissance Satellite Imagery

  • Shin, Sung-Woong;Schenk, Tony
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.3
    • /
    • pp.223-233
    • /
    • 2008
  • In the mid 90's, the U.S. government released images acquired by the first generation of photo reconnaissance satellite missions between 1960 and 1972. The Declassified Intelligent Satellite Photographs (DISP) from the Corona mission are of high quality with an astounding ground resolution of about 2 m. The KH-4A panoramic camera system employed a scan angle of $70^{\circ}$ that produces film strips with a dimension of $55\;mm\;{\times}\;757\;mm$. Since GPS/INS did not exist at the time of data acquisition, the exterior orientation must be established in the traditional way by using control information and the interior orientation of the camera. Detailed information about the camera is not available, however. For reconstructing points in object space from DISP imagery to an accuracy that is comparable to high resolution (a few meters), a precise camera model is essential. This paper is concerned with the derivation of a rigorous mathematical model for the KH-4A/B panoramic camera. The proposed model is compared with generic sensor models, such as affine transformation and rational functions. The paper concludes with experimental results concerning the precision of reconstructed points in object space. The rigorous mathematical panoramic camera model for the KH-4A camera system is based on extended collinearity equations assuming that the satellite trajectory during one scan is smooth and the attitude remains unchanged. As a result, the collinearity equations express the perspective center as a function of the scan time. With the known satellite velocity this will translate into a shift along-track. Therefore, the exterior orientation contains seven parameters to be estimated. The reconstruction of object points can now be performed with the exterior orientation parameters, either by intersecting bundle rays with a known surface or by using the stereoscopic KH-4A arrangement with fore and aft cameras mounted an angle of $30^{\circ}$.

Development of the Line Scan Diffusion Weighted Imaging at Low Tesla Magnetic Resonance Imaging System (저자장 자기공명영상시스템에서 선주사확산강조영상기법 개발)

  • Hong, Cheol-Pyo;Lee, Dong-Hoon;Lee, Do-Wan;Lee, Man-Woo;Paek, Mun-Young;Han, Bong-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.2 no.2
    • /
    • pp.31-38
    • /
    • 2008
  • Line scan diffusion weighted imaging (LSDI) pulse sequence for 0.32 T magnetic resonance imaging (MRI) system was developed. In the LSDI pulse sequence, the imaging volume is formed by the intersection of the two perpendicular planes selected by the two slice-selective $\pi$/2-pulse and $\pi$-pulse and two diffusion sensitizing gradients placed on the both side of the refocusing $\pi$-pulse and the standard frequency encoding readout was followed. Since the maximum gradient amplitude for the MR system was 15 mT/m the maximum b value was $301.50s/mm^2$. Using the developed LSDI pulse sequence, the diffusion weighted images for the aqueous NaCl solution phantom and triacylglycerol solution phantom calculated from the line scan diffusion weighted images gives the same results within the standard error range (mean diffusivities = $963.90{\pm}79.83({\times}10^{-6}mm^2/s)$ at 0.32 T, $956.77{\pm}4.12({\times}10^{-6}mm^2/s)$ at 1.5 T) and the LSDI images were insensitive to the magnetic susceptibility difference and chemical shift.

  • PDF